• Title/Summary/Keyword: 특징 검출

Search Result 2,389, Processing Time 0.027 seconds

Environment Implementation of Real-time Supervisory System Using Motion Detection Method (동작 검출 기법을 이용한 실시간 감시시스템의 구현)

  • 김형균;고석만;오무송
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.999-1002
    • /
    • 2003
  • In this study, embodied supervisory system that apply motion detection technique to small web camera and detects watch picture. Motion detection technique that use pixel value of car image that use in existing need memory to store background image. Also, there is sensitive shortcoming at increase of execution time by data process of pixel unit and noise. Suggested technique that compare extracting motion information by block unit to do to have complexion that solve this shortcoming and is strong at noise. Because motion information by block compares block characteristic value of image without need frame memory, store characteristic cost by block of image. Also, can get effect that reduce influence about noise and is less sensitive to flicker etc.. of camera more than motion detection that use pixel value in process that find characteristic value by block unit.

  • PDF

Face Detection Using Multiple Filters and Hybrid Neural Networks (다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법)

  • Cho, Il-Gook;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

Skin Color Segmentation Using LDA and Indexing Table (LDA와 인덱싱 테이블을 이용한 피부영역 검출방법)

  • 양희성;강호진;이준호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.341-344
    • /
    • 2000
  • 본 논문에서는 복잡한 배경이나 조명 변화가 심한 영상에서도 피부영역을 정확하게 검출할 수 있는 피부영역 검출방법을 제안한다. 제안된 방법은 오프라인(off-line) 훈련과정과 온라인(on-line) 검출과정의 두 단계로 나누어진다. 훈련단계에서는 다양한 조명하에서 얻은 피부영상과 배경영상으로 구성된 훈련영상을 다차원의 열벡터로 표현하고 열벡터에 LDA(linear discriminant analysis)를 적용하여 선형변환된 특징벡터를 가지고 인덱싱 테이블을 생성한다. 검출단계에서는 카메라로 들어온 칼라영상을 여러 개의 조각영상으로 나누고 각각의 조각영상에 대하여 LDA를 적용하여 선형변환된 특징벡터를 구한다. 구해진 특징벡터를 미리 생성한 LDA 인덱싱 테이블에서 찾아 피부영역을 검출한다. 제안된 방법을 조명을 변화시킨 다양한 영상에 적용하여 실험한 결과 검출률이 상당히 우수함을 알 수 있었다.

  • PDF

Face Detection Using Features of Hair and Faces (헤어와 얼굴의 특징을 이용한 얼굴 검출)

  • Hwang Dong-Guk;Lee Sang-Ju;Choi Dong-Jin;Park Hee-Jung;Jun Byoung-Min;Lee Woo-Ram
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.199-205
    • /
    • 2005
  • In this paper, we present a face detection algorithm which uses the features of color and Geometry of faces and hairs appeared in images. after candidate area detection using color features, background areas are removed by the deviation of luminance in each of candidate areas. And then, final face area is detected using feature of geometry between face and hair. Performance of the presented algorithm is evaluated by detection rate test. The test result showed high detection rate.

  • PDF

Character Region Detection using Edge Features of Character and Character String in Signboard Image (문자 및 문자열의 에지 특징을 이용한 표시판 이미지에서 문자영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.212-214
    • /
    • 2008
  • 자연이미지에 포함된 안내 표시판은 많은 유용한 정보를 포함하고 있으므로 이를 효과적으로 검출하여 문자인식시스템과 연동될 수 있다면 다양한 응용분야에서 활용될 수 있다. 그러므로 본 논문에서는 문자 및 문자열의 에지 특징을 이용하여 표시판이미지로부터 문자영역을 검출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 검출하여 에지 이미지를 생성한다. 에지 이미지를 레이블링을 하여 연결요소 성분을 추출한다. 레이블 영역에서 문자와 문자열 에지 특징을 분석하여 후보 문자영역으로 추출한다. 후보 문자영역에 대한 검증을 수행함으로서 최종적인 문자영역을 검출한다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 자연이미지에서 기울어진 문자영역과 다양한 크기의 문자를 갖는 문자영역을 효과적으로 검출하였다.

  • PDF

A Fast Scene Change Detection Algorithm Using Feature Of B Frame in Compressed MPEG Video Sequence (압축된 MPEG 비디오 시퀀스에서 B 프레임의 특징을 이용한 빠른 장면전환 검출 알고리즘)

  • 김중헌;김신형;박두영;장종환
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.195-198
    • /
    • 2001
  • 비디오 데이터의 효율적인 저장, 관리를 위해서는 장면진환 검출을 통한 비디오 분할 기술에 대한 연구가 필요하다. 본 논문에서는 MPEG 압축 비디오 상의 B(Bidirectional) 프레임의 특성을 복호화 과정을 거치지 않고 직접 추출하여 I(Intra), P(Predictive), B(Bidirectional) 프레임에 제안받지 않고 장면전환을 검출해 내는 방법을 제안한다. 장면전환 검출을 위해 복호화 하지 않고 필요한 데이터만을 추출해 내어 B 프레임의 특징만을 이용해 검출하므로 빠르면서도 정화한 장면전환을 검출한다. 또한 카메라 움직임이나 빛의 변화 같은 잡음에 강건한 방법을 제안한다.

  • PDF

Smoke Detection using Region Growing Method (영역 확장법을 이용한 연기검출)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.271-280
    • /
    • 2009
  • In this paper, we propose a smoke detection method using region growing method in outdoor video sequences. Our proposed method is composed of three steps; the initial change area detection step, the boundary finding and expanding step, and the smoke classification step. In the first step, we use a background subtraction to detect changed areas in the current input frame against the background image. In difference images of the background subtraction, we calculate a binary image using a threshold value and apply morphology operations to the binary image to remove noises. In the second step, we find boundaries of the changed areas using labeling algorithm and expand the boundaries to their neighbors using the region growing algorithm. In the final step, ellipses of the boundaries are estimated using moments. We classify whether the boundary is smoke by using the temporal information.

Fingerprint Matching Using Classify of Minutiae (특징점의 분류를 이용한 지문 정합방법)

  • Kim, Jae-Il;Yang, Ju-Cheng;Park, Dong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.548-550
    • /
    • 2005
  • 본 논문에서는 지문 인식을 하는데 있어서 특징점의 정보를 이용하여 지문을 정합하는 방법을 제안 하였다. 지문에는 중심점(core point), 삼각주(delta point), 분기점(bifurcation), 단점(ending point)들이 있는데, 본 논문에서는 먼저 poincare index를 이용하여 중심점을 검출한다. 검출된 중심점을 중심으로 하여 관심영역(ROI : region of interest)을 결정하여 영역내의 특징점들을 검출하여, 각 각 특징별로 분류한 다음 중심점과 특징점들과의 관계를 계산하여 지문 정합에 이용한다. 입력 받은 지문은 개개인 각각 양손 모두 10개의 손가락에서 센서의 누르기 압력을 다르게 하여 2번 입력 받아 사용하였다. 실험 결과 기존의 특징점 기반 알고리즘 보다 더 적은 영역에서 좀 더 정확하고 신뢰할 수 있는 지문 정합을 보여줌을 확인 하였다.

  • PDF

Early Multiple Fault Identification of Low-Speed Rolling Element Bearings (저속 구름 베어링의 다중 결함 조기 검출)

  • Kang, Hyunjun;Jeong, In-Kyu;Kang, Myeongsu;Kim, Jong-Myon
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering (구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF