• Title/Summary/Keyword: 특징패턴

Search Result 1,765, Processing Time 0.037 seconds

Iris Verification Using Pattern Features in Iris Radii (홍채반지름별 패턴특징에 따른 홍채검증)

  • 조성원;김태훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.170-174
    • /
    • 2000
  • 본 논문의 목적은 여러 생리학적 특징중 높은 신뢰성을 갖는 것으로 알려진 홍채로부터 고유한 특징을 추출하고, 인식/검증하는 알고리즘을 개발하는데 있다. 홍채패턴은 크게 주름과 주름내부의 패턴부분으로 구성되며 그 고유한 패턴은 주로 내부에 집중되어 있다. 본 논문에서는 홍채의 주름윤곽과 주름내부의 패턴 특징의 추출을 위해, 동공중심을 기준으로 반지름길이에 따라 홍채영역을 분리하여 ID신호를 추출하여 특징으로 사용하였으며, 전처리부에서는 thresholding 방법에 의해 안구로부터 홍채영상을 획득하고, 획득된 반지름별 ID 홍채특징으로부터 매칭시험을 수행하였다. 제안된 방법은 주름윤곽으로부터 ID 특징신호를 사용한 방법에서 무시한 홍채내부 패턴을 고려하였으며, 홍채 전체영역에 대해 2D 웨이블렛을 이용한 홍채특징추출 방법과 비교시보다 신속한 특징추출이 가능하다.

  • PDF

Comparison of Feature Selection Methods using the Statistics of Words in Text Categorization (문서 분류에서 단어의 통계 정보를 이용한 특징 선택 기법의 비교)

  • 임윤택;윤충화
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.209-216
    • /
    • 1999
  • 정보 검색 분야의 문서 분류에 기계 학습 기법을 적용할 때 발생하는 가장 큰 문제는 문서를 패턴으로 표현할 때, 하나의 패턴이 가지는 특징의 수가 기계 학습 기법에서 처리할 수 있는 범위를 넘어서는 것이다. 이러한 문제를 해결하기 위하여 특징 선택 기법은 패턴을 구성하고 있는 특징 중에서 실제 문서 분류에 많은 영향을 주는 특징만을 선택하여, 기계 학습 기법에서 쉽게 처리할 수 있을 정도의 패턴을 구성하게 한다. 본 논문에서는 이러한 특징 선택 기법 중에서 IG(Information Gain), Gini index, Relief-F, DF(Document Frequency)를 비교하였다. 실험 결과 문서들에 포함된 모든 고유 단어를 특징의 길이로 하여 패턴을 구성했을 때보다 특징 선택 기법을 적용하여 고유 단어 중 일부를 특징으로 패턴을 구성할 때 기계학습에서 더 향상된 분류 성능을 보였다

  • PDF

Personal Verification using Feature Patterns of Palmprint (손바닥 특징패턴을 이용한 개인식별)

  • 전선배;임영도
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1437-1450
    • /
    • 1992
  • This paper describes the feature extraction of the interdigital regions of palm, and proposes a personal verification algorithm using the extracted features and the pattern types of those. The procedures of the feature extraction are as follows : first, the interdigital region is partitioned into several subregions, examining the phase of rigdes in each subregion, deciding the direction of that phase, and making the direction matrix of the region, we analyze this direction matrix to contain a feature pattern, and then, yield the first core. Second, applying the thinning to around the first core and tracing the thinned ridges, we yield the feature pattern types and second cores. Finally, the feature patterns coordinates included all of them are built. Then, distances and directions from each second core reaching to all the others are yielded from that coordinates. These informations are used to make a feature parameter. In our verification algorithm, such pattern types, the numbers of feature patterns, theses positions and feature parameters are used to analyze.

  • PDF

Mounted PCB Pattern Recognition System Using Neural Network (신경망을 이용한 실장 PCB 패턴인식 시스템)

  • 김상철;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.411-416
    • /
    • 1998
  • 본 논문은 Wavelet 변환 영역에서 특징 벡터를 추출하여 ART2 신경회로망으로 실장 PCB 패턴을 인식하는 알고리즘을 제안한다. PCB 형태 정보는 Wavelet에 의해 주파수 영역으로 변환되고, 이들 계수 행렬로부터 특징 벡터로서 추출된다. ART2 신경회로망은 이러한 특징 벡터들을 입력벡터로 사용하여 인식한다. 실장 PCB 영상 55장을 사용하여 실험한 결고, 학습된 입력패턴은 물론 비학습 입력패턴에 대해서도 약 99%의 인식율을 얻었다. 또한 제안된 방법은 Wavelet 변환 영역사에서 수직, 수평, 대각선 정보만으로 특징 벡터를 구축함으로써 특징 추출 과정이 비교적 간단하고 특징 벡터의 수도 줄일 수 있어, 효과적인 특징벡터의 추출이 가능함을 보였다.

  • PDF

A Study on the User Identification System Based on Iris Pattern using GHA (GHA를 이용한 홍채 패턴기반의 사용자 인증 시스템에 관한 연구)

  • 주동현;염동훈;고기영;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.205-208
    • /
    • 2001
  • 본 논문은 Biometrics분야 중 다른 생체학적 특징보다도 정확도면에서 가장 뛰어난 특징인 안구의 홍채 패턴을 이용하여 사용자를 인증 하는 시스템에 관한 연구이다. 입력된 안구 영상으로부터 전처리과정을 거쳐 극좌표 변환을 통해 홍채 패턴을 추출한 후 웨이블릿 변환을 이용하여 특징패턴을 압축하였으며, PCA(Principal Component Analysis:주성분 해석)의 한 종류인 GHA(Generalized Hebbian Algorithm)를 사용하여 등록된 사용자의 패턴 DB 에서 Basis 배열을 추출하고, 구축된 Basis 배열과 입력 영상 패턴과의 비교 Matching을 통하여 사용자를 인증하는 시스템을 제안한다.

  • PDF

Optical Head Tracker using Pattern Matching for Initial Attitude (초기자세 획득을 위한 패턴 매칭을 이용한 광학 방식 헤드 트랙커)

  • Kim, Young-Il;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.470-475
    • /
    • 2009
  • This paper is the study which is head tracker using pattern matching. Proposal algorithm obtains initial attitude of head tracker using pattern matching. Optical head tracker consists of infrared LEDs(features) which are attached helmet as pattern, stereo infrared cameras. Proposal algorithm analyzes patterns by error rate of feature distance and estimates feature characteristic number. Initial attitude of head tracker is obtained to compare map data and feature characteristic number.

Feature Extraction Using Trace Transform for Insect footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Cho, Kyoung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF

Insect Footprint Recognition Using Trace Transform and Fuzzy Weighted Mean (Trace 변환과 퍼지 가중치 평균을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Kim, Kwang-Baek;Woo, Young-Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.143-147
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하는 기법을 제안한다. Trace 변환을 이용하면 패턴의 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 이 방법은 특징값을 추출하기 위해서 병렬로 표현되는 trace-line을 따라 특징들을 일차적으로 도출하고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 이동, 회전 반사에 관계없이 동일한 특징값이 추출됨을 확인할 수 있고, 곤충발자국의 고유한 패턴을 찾아 인식하기 위해서 추출된 특징값들은 퍼지 가중치 평균을 이용하여 인식 실험을 수행하고 그 결과를 제시하였다.

  • PDF

Classification and Recognition of Movement Behavior of Animal based on Decision Tree (의사결정나무를 이용한 생물의 행동 패턴 구분과 인식)

  • Lee, Seng-Tai;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.225-228
    • /
    • 2005
  • 본 논문에서는 생물의 2차원영상에서 4가지의 특징을 추출한 다음 약품에 대한 생물의 행동 패턴 반응에 대하여 의사결정나무를 적용하여 패턴의 인식 및 분류를 하였다. 생물의 행동패턴을 대변하는 물리적인 특징인 속도, 방향전환 각도, 이동거리에 대하여 각각 중간이상속도비율, FFT(Fast Fourier Transformation), 2차원 히스토그램 면적, 프렉탈, 무게중심을 사용하여 특징을 추출하였다. 이렇게 추출된 4가지의 특징변수들을 사용하여 의사결정나무 모델을 구성한 다음 생물의 약품 첨가에 대한 반응을 분석하였다. 또한 결과에서는 기존의 생물의 행동패턴 구분에 쓰였던 전형적인 기법(conventional methods)보다 본 연구에서 적용한 의사결정나무가 생물의 행동패턴이 가지는 물리적 요소에 대한 독해력을 가짐을 보임으로써 특정환경에서 이동행동에 대한 분석을 용이하게 하고자 하였다.

  • PDF

Electrooptic pattern recognition system by the use of line-orientation and eigenvector features (방향선소와 고유벡터 특징을 이용한 전기광학적 패턴인식 시스템)

  • 신동학;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.403-409
    • /
    • 1997
  • We proposed a system that can perform pattern recognition based on parrallel optical feature extraction and performed experiments on this. The feature to be extracted are both 6 simple line orientations and two eigenvectors of the covariance matrix of the patterns that cannot be distinguished with the line orientation features alone. Our system consists of a feature-extraction part and a pattern-recognition part. The former that extracts the features in parallel with the multiplexed Vander Lugt filters was implemented optically, while the latter that performs the pattern recognition by the use of the extracted features was implemented in a computer. In the pattern recognition part, two methods are tested;one is to use an artificial neural network, which is trained to recognize the features directly, the other is to count the numbers of specific features simply and then to compare them with the stored reference feature numbers. We report the preliminary experimental results tested for 15 alpabet patterns with only straight line segments.

  • PDF