Journal of the Korea Society of Computer and Information
/
v.11
no.6
s.44
/
pp.79-86
/
2006
Classification technology is essential for fast retrieval in large multi-media database. This paper proposes a combining GA(Genetic Algorithm) and SVM(Support Vector Machine) model to fast retrieval. We used color and texture as feature vectors. We improved the retrieval accuracy by using proposed model which retrieves an optimal feature vector set in extracted feature vector sets. The first performance test was executed for the performance of color, texture and the feature vector combined with color and texture. The second performance test, was executed for performance of SVM and proposed algorithm. The results of the experiment, using the feature vector combined color and texture showed a good Performance than a single feature vector and the proposed algorithm using hybrid method also showed a good performance than SVM algorithm.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.516-518
/
2003
본 논문은 특허 문서에 맞게 벡터스페이스 모델을 적용하여 특허정보 검색기를 구현한다. 기존의 상용 특허 검색 시스템의 문제점을 제시하고, 특허 문헌의 특징을 분석하여, 이를 반영한 특허 문헌 검색등의 벡터 스페이스 모델을 제시한다. 하나의 특허 문서는 서로 상이한 특성을 지닌 텍스트와 데이터의 조합으로 이루어져 있다. 따라서 이를 하나의 벡터로 표현하는 것이 용이하지 않다. 이에 대해 본 연구에서는 내용 필드들을 특성에 따라 둘 이상의 벡터로 표현하고, 수치 및 고유명 필드는 불린검색형태로 처리되는 혼합형 벡터 모델을 제안한다. 각 필드의 특징에 맞게 색인어를 추출하며, 텍스트 필드의 색인어률 벡터로 표현하는 과정에서는 잘 알려진 TF-IDF 가중치를 사용하되, 특허 문서가 IPC 특허 분류 기준에 따라 완전 분류되어 있는 문서라는 특징을 이용, 보다 정확한 가중치를 부여한다. 실험과 성능평가를 통하여 제안한 특허 모델의 유용성을 보인다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.521-523
/
1999
본 논문에서는 입력 영상 열에서 얼굴 영역을 추출하고, 영역 내 특징점들의 움직임 벡터를 원근 움직임 모델에 정합하여 얼굴 영역을 추적하는 새로운 방법을 제안한다. 제안된 방법은 계층적 형판정합을 이용하여 얼굴 영역을 추출하고, 해당 영역에서 DoG 반응의 국부최대치를 찾아 특징점을 구한다. 그리고 최소제곱추정기법을 이용하여 각 특징점에서 얻어진 움직임 벡터를 원근 모델에 정합한다. 제안된 방법은 선별된 특징점에서 움직임 벡터를 계산함으로써 연산량을 줄일 수 있었고, 원근 움직임 모델을 이용함으로써 잡영에 강한 특성을 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.428-432
/
2005
영상 데이터와 같은 대용량의 데이터를 분류하고자 할 경우, 입력 데이터의 차원을 줄여서 특징 벡터를 뽑아내는 전처리 과정은 필수적이다. 이 경우 특징 벡터가 입력 데이터의 정보를 최대한 포함하도록 하는 것이 중요하다. 특징 벡터를 뽑는 대표적인 방법으로는 PCA, ICA, LDA, MLP와 같은 특징 추출(feature extraction) 방법을 들 수 있다. PCA와 LDA는 무감독 학습 방식이고, LDA, MLP는 감독 학습 방식에 해당한다. 감독학습 방식의 경우 입력 정보와 함께 클래스 정보를 사용하기 때문에 데이터를 분류하기에 더 좋은 특징들을 뽑아낼 수 있는 장점이 있다. 본 논문에서는 무감독 학습 방식인 PCA에 클래스에 대한 정보를 함께 사용하여 특징을 추출함으로써 데이터 분류에 더욱 적합한 특징들을 뽑는 방법을 제안하였다. 그리고, Yale face database를 사용하여 제안한 알고리즘의 성능을 기존의 알고리즘과 비교, 테스트하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.577-579
/
2003
본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.1
/
pp.9-15
/
2017
In this study we performed the experiment to detect the ERP using SVM with wavelet features. The EEG signal that is generated visual stimulated ERP database in SCCN applied for the experiment. The feature vectors for experiment are categorized frequency and continuous wavelet- based vectors. In experimental results, the detection rate of SVM with wavelet feature vectors improved above 10% comparing with frequency- based feature vector. Based on the experimental results we analyzed the relation between the activity degree of the ERP and the band split characteristics of the ERP by wavelet transform.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.265-267
/
1998
본 논문은 내용기반 이미지 검색시스템에서 사용하는 특징벡터들 중에서 하나인 형태 특징벡터를 추출하는데 초점을 맞쳤다. 특히 다양한 방향으로 회전된 영상의 형태를 수용할 수 있는 모멘트 정보를 영상의 형태 특징벡터로 사용하였다. 그 결과 영상과 회전되지 않은 영상간의 차이값이 0에 가까워 유사성이 아주 좋음을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.592-594
/
2003
이 논문에서는 wavelet과 sobel filter를 사용하여 영상의 객관적인 평가 점수를 계산하는 새로운 기법을 제안한다. 이 기법은 orthogonal wavelet 변환을 기초로 하고 있으며 원본 영상과 처리된 영상 데이터가 모두 가용하다는 것을 전제로 한다. Wavelet을 이용해 주파수에 따라 분할된 영상 정보를 이용해 각각의 부영역 별 차영상을 획득하고 이 획득된 영상의 에너지를 이용해 화질 평가 수치를 계산한다. 부영역 별로 획득된 영상은 일정한 크기의 블록으로 분할되어 동일한 블록 내에서 가용한 영상의 특징에 관한 정보(contrast, edge 영역의 분포 정도) 벡터와 내적하여 새로운 특징 벡터로 사용되고, 이 특징 벡터의 가중치를 최적화하여 높은 상관도의 화질평가 점수를 산출하게 된다.
This paper proposes feature parameter transformation method using independent component analysis (ICA) for speaker identification. The proposed method assumes that the cepstral vectors from various channel-conditioned speech are constructed by a linear combination of some characteristic functions with random channel noise added, and transforms them into new vectors using ICA. The resultant vector space can give emphasis to the repetitive speaker information and suppress the random channel distortions. Experimental results show that the transformation method is effective for the improvement of speaker identification system.
Yoo, Donggeun;Park, Chaehoon;Choi, Yukyung;Kweon, In So
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.382-385
/
2012
이 논문에서는 영상 검색(image retrieval) 및 영상 부류(image categorization)을 위하여 영상을 기술할 때 영상의 클레스(class)별로 서로 다른 주요 특징량(feature)에 가중치 를 주는 방법론을 제안한다. 기존에 연구되어온 영상의 특징량 벡터에 가중치를 주는 방식은 모든 영상 클레스에 대하여 동일하게 가중치를 적용하기 때문에 영상이 클레스별로 서로 다른 특징량이 중요하다는 성질을 이용할 수 없다. 영상이 클레 별로 서로 다른 특징량이 중요하다는 성질을 이용하기 위하여 영상의 클레스별로 특징량 벡터에 서로 다른 가중치 벡터(weight vector)를 학습하였다. 그 후 질의 영상(query image)이 입력되면, 기존의 영상 검색 프레임워크(framework)를 통해 데이터베이 스(database)로 부터 미리 정의된 서브 클레스(sub-class)의 수에 해당하는 영상부 집합(subset)을 만들었다. 그리고 영상부 집합의 특징량 벡터들에 클레스별로 각각 학습된 가중치 벡터를 적용하여 특징량 벡터들 간의 거리를 다시 계산하여 리랭킹(re-ranking)하였다. 이 방법론을 UKBench Dataset에 적용하여 실험을 해보았으며 가중치를 주기 전과 비교 하였을 때 더 높은 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.