Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.141-144
/
2000
본 논문은 교통 안전 표지판 인식에 적용이 가능한 새로운 영상의 특징 정보 추출 방법을 제안한다. 제안된 방법은 인간의 인식 시스템에서 이용하는 기본 특징인 색과 형태정보를 이용하여 영상 인식에 적용한다. 색 정보의 추출은 RGB성분의 히스토그램 분포를 이용하고 형태 정보의 추출은 기하학적인 형태 정보 추출 방법과 모멘트를 이용한다. 본 논문은 유사 영상 검색을 위한 새로운 특징 정보 추출 방법과 간단한 특징 정보 표현 그리고 계산량의 감소 효과를 얻었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.11-14
/
2007
인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.
In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.
In this paper, we propose a framework for improving the performance of semantic segmentation of agricultural multispectral image using feature fusion techniques. Most of the semantic segmentation models being studied in the field of smart farms are trained on RGB images and focus on increasing the depth and complexity of the model to improve performance. In this study, we go beyond the conventional approach and optimize and design a model with multispectral and attention mechanisms. The proposed method fuses features from multiple channels collected from a UAV along with a single RGB image to increase feature extraction performance and recognize complementary features to increase the learning effect. We study the model structure to focus on feature fusion and compare its performance with other models by experimenting with favorable channels and combinations for crop images. The experimental results show that the model combining RGB and NDVI performs better than combinations with other channels.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.437-443
/
2015
This paper presents face recognition based on the fusion of visible image and thermal infrared (IR) texture estimated from the face image in the visible spectrum. The proposed face recognition scheme uses a multi- layer neural network to estimate thermal texture from visible imagery. In the training process, a set of visible and thermal IR image pairs are used to determine the parameters of the neural network to learn a complex mapping from a visible image to its thermal texture in the low-dimensional feature space. The trained neural network estimates the principal components of the thermal texture corresponding to the input visible image. Extensive experiments on face recognition were performed using two popular face recognition algorithms, Eigenfaces and Fisherfaces for NIST/Equinox database for benchmarking. The fusion of visible image and thermal IR texture demonstrated improved face recognition accuracies over conventional face recognition in terms of receiver operating characteristics (ROC) as well as first matching performances.
No, Jong-Heun;Baek, Yeong-Hyeon;Mun, Seong-Ryong;Gang, Yeong-Jin
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.167-170
/
2006
본 논문은 선형분류기인 LDA 융합모델과 최소거리패턴분류법을 이용한 얼굴표정인식 알고리즘 연구에 관한 것이다. 제안된 알고리즘은 얼굴 표정을 인식하기 위해 두 단계의 특징 추출과정과 인식단계를 거치게 된다. 먼저 특징추출 단계에서는 얼굴 표정이 담긴 영상을 PCA를 이용해 고차원에서 저차원의 공간으로 변환한 후, LDA 이용해 특징벡터를 클래스 별로 나누어 분류한다. 다음 단계로 LDA융합모델을 통해 계산된 특징벡터에 최소거리패턴분류법을 적용함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.197-200
/
2010
단백질의 서열 정보와 기능 정보의 양이 증가함에 따라 컴퓨터 실험을 통한 단백질의 기능 예측이 가능해졌으며 정확성이 높은 예측 시스템을 개발하려는 여러 연구가 시도되고 있다. 대표적인 방법으로 서열 유사도를 기반으로 기능 예측을 하는 시스템이 제안되었으나 단백질 중에는 서열이 유사하지만 기능이 다르거나 또는 서열은 다름에도 불구하고 기능이 같은 단백질이 존재하기 때문에 서열의 유사도 만을 이용해서는 단백질의 기능 예측을 어렵다. 이러한 유사도 방법의 단점을 극복하기 위해 단백질 서열로부터 추출한 특징을 기반으로 분류하는 방법도 제안되었다. 본 논문에서는 이러한 기존 방법들의 장점을 얻기 위하여 서열 유사도 방법과 특징 기반 방법을 융합한 단백질 기능 예측 시스템을 제안하고 예측 정확성 분석을 위한 실험을 실시하였다. 실험의 결과에 따르면 제안된 융합시스템이 서열 유사도만을 이용한 방법과 특징 기반 방법보다 좋은 예측 정확률을 갖는 것으로 분석되었다.
In this paper, we propose a texture feature-based language identification by fusion of Gabor, MDLC (multi-lag directional local correlation), and co-occurrence features. In the proposed method, for a test image, Gabor magnitude images are first obtained by Gabor transform followed by magnitude operator. Moments for the Gabor magniude images are then computed and vectorized. MDLC images are then obtained by MDLC operator and their moments are computed and vectorized. GLCM (gray-level co-occurrence matrix) is next calculated from the test image and co-occurrence features are computed using the GLCM, and the features are also vectorized. The three vectors of the Gabor, MDLC, and co-occurrence features are fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. We evaluate the performance of our method by examining averaged identification rates for a test document image DB obtained by scanning of documents with 15 languages. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for the test DB.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.78-81
/
2003
본 논문은 SVM(support vector machine)을 이용한 음성인식기에 대해 효과적인 특징 파라메터를 제안한다. SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있으며 최적의 특징 파라메터를 선택하기 위해 본 논문에서는 SVM을 이용한 음성인식기를 사용하여 PCA(principal component analysis), ICA(independent component analysis) 알고리즘을 적용하여 MFCC(met frequency cepstrum coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 ICA에 의한 특징 파라메터가 가장 우수한 성능을 나타내었으며 특징 공간에서 각 클래스의 분포도 또한 ICA가 가장 높은 선형 분별성을 나타내었다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.293-296
/
2000
본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.