• Title/Summary/Keyword: 특징요소 추출

Search Result 535, Processing Time 0.024 seconds

Extraction of Facial Feature Component using Section Segmentation of Block-units (블록단위 영역분할을 이용한 얼굴 특징 요소 추출)

  • 김승업;이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

A Study on Extraction of Face Region and Facial Characteristics Point (얼굴 영역 및 구성 요소의 특징점 추출에 관한 연구)

  • 김성식;김진태;김동욱
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문은 얼굴 영역 및 얼굴 구성 요소의 얼굴 특징점을 추출하는 방법을 제안한다. 얼굴 특징점은 얼굴 인식을 하는데 있어서 중요한 자료이다. 얼굴 영역은 객체 단위 추출 방법을 사용하여 얼굴의 고유 영역만을 추출한다. 얼굴의 구성요소는 각 요소간의 기하학적 정보를 이용하여 얼굴 영역 내에서 추출해 간다. 얼굴 구성요소의 특징점은 미리 정해진 위치에서 특징점을 결정한다. 그리고 이런 특징점간의 상호 연관관계를 설정한다.

  • PDF

Face Feature Extraction for Automatic Character Creation (캐릭터의 자동 생성을 위한 얼굴에서의 특징 추출)

  • 정종률;정승도;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.161-164
    • /
    • 2001
  • 캐릭터의 자동 생성이란 영상처리 기법을 이용하여 사람의 얼굴에서 특징을 추출하고, 이 특징들을 기반으로 독특한 캐릭터를 자동으로 얻어내는 방법을 의미한다. 본 논문에서는 사람마다의 얼굴의 특성에 기반한 캐릭터를 자동으로 생성하기 위하여 얼굴의 각 구성요소들의 특징을 효과적으로 추출하기 위한 방법을 제시한다. 얼굴을 구성하는 각각의 요소들의 특징을 추출하고, 추출된 특징을 바탕으로 각 구성요소에 해당하는 데이터베이스를 검색하여 특징을 잘 표현할 수 있는 그림을 선택한다. 최종적으로 선택된 그림들은 원 이미지의 비율에 맞도록 재구성하여 얼굴 캐릭터를 생성한다.

  • PDF

Feature Extraction of Face and Face Elements Using Projection and Correction of Incline (투영과 기울기 보정을 이용한 얼굴 및 얼굴 요소의 특징 추출)

  • 김진태;김동욱;오정수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.499-505
    • /
    • 2003
  • This paper proposes methods to extract face elements and facial characteristics points for face recognition. We select a candidate region of the face elements with geometrical information between them inside the extracted face region with skin color and extract them using their inherent features. The facial characteristics to be applied to face recognition is expressed with geometrical relation such as distance and angle between the extracted face elements. Experiment results shows good performance to extract of face elements.

Facial Caricaturing System - with Correction of Facial Decline - (얼굴 캐리커처 생성 시스템 - 얼굴 기울기 교정을 통한 -)

  • Kim, Yong-Gyun;Lee, Ok-Kyoung;Lee, Chang-Soo;Oh, Hae-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.887-890
    • /
    • 2001
  • 본 논문은 사용자로부터 입력된 얼굴 사진을 얼굴 기울기 교정을 거친 후 얼굴 구성요소의 특징정보를 추출하고, 추출된 특징정보와 가장 유사한 캐리커처를 생성하는데 목적이 있다. 우리는 입력된 인물 사진에서 눈 영역 추출을 이용, 얼굴의 기울기를 교정시킨 다음 세그멘테이션을 통하여 인물의 얼굴을 추출하고, 추출된 얼굴의 수직과 수평 히스토그램을 이용하여 얼굴 구성요소를 추출한다. 또한 모양과 크기 등이 다양한 특징정보를 가진 얼굴 구성요소에 관한 데이터베이스를 구축함으로써 캐리커처의 질을 향상시키고자 한다. 우리는 사용자로부터 입력된 사진에서 추출된 얼굴 구성요소의 특징정보와 데이터베이스에 저장되어 있는 캐리커처 이미지의 특징정보와 유사도를 계산한다. 마지막으로 유사도가 가장 높은 캐리커처 이미지를 선택하여 눈, 눈썹, 코, 입, 얼굴형 등을 각각 위치에 매핑시킨다.

  • PDF

A New Approach to Human Iris Recognition based on Statistical Information Theory (통계적 정보를 기반으로 하는 홍채인식에 대한 새로운 접근 방법)

  • 기균도;이관용;박혜영;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.365-367
    • /
    • 2000
  • 본 논문에서는 홍채의 특징을 효율적으로 추출하기 위한 새로운 접근 방법으로서, 통계적 정보를 기반으로 하는 주성분요소분석(PCA) 및 독립성분요소분석(ICA)을 홍채영상에 적용한 결과에 대하여 소개하고자 한다. 또한, 전체영상을 몇 개의 부분영상으로 분할한 후, 분할된 영상에 대하여 주성분요소분석과 독립성분요소분석을 적용함으로서, 분할된 부분영상의 특징이 전체영상에서 추출한 특징보다 효과적으로 홍채의 특징을 표현하는 결과를 보여 주었다. 이러한 방법을 홍채영상에서 효율적인 특징을 추출하기 위한 새로운 접근방법으로서 적용하였으며, 다양한 특징 집합에 대하여 적용한 결과, 홍채영상에서 redundant한 정보와 잡음을 제거함으로써 compact하고 robust한 특징을 추출할 수 있었다.

  • PDF

Facial Expression Feature Extraction for Expression Recognition (표정 인식을 위한 얼굴의 표정 특징 추출)

  • Kim, Young-Il;Kim, Jung-Hoon;Hong, Seok-Keun;Cho, Seok-Je
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • 본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.

  • PDF

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF

Face Recognition By Combining PCA and ICA (주 요소와 독립 요소 분석의 통합에 의한 얼굴 인식)

  • Yoo Jae-Hung;Kim Kang-Chul;Lim Chang-Gyoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2006
  • In a conventional ICA(Independent Component Analysis) based face recognition method, PCA(Principal Component Analysis) first is used for feature extraction, ICA learning method then is applied for feature enhancement in the reduced dimension. It is not considered that a necessary component can be located in the discarded feature space. In the new ICA(NICA), learning extracts features using the magnitude of kurtosis (4-th order central moment or cumulant). But, the pure ICA method can not discard noise effectively. The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. Namely, PCA does whitening and noise filtering. ICA performs feature extraction. Experiment results show the effectiveness of the new ICA method compared to the conventional ICA approach.

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung-Kang;Lee, Jae-Hyuk;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.377-380
    • /
    • 2012
  • 본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.