• 제목/요약/키워드: 특징선

검색결과 1,662건 처리시간 0.025초

모양 기반 이미지 분류를 위한 최적의 우세점 추출 (Extraction of Optimal Interest Points for Shape-based Image Classification)

  • 조성택;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.362-371
    • /
    • 2003
  • 이 논문에서는 이미지 데이타베이스에서 모양 특징 기반 이미지 분류와 인덱싱을 위해 객체의 윤곽선 특성을 고려해 임계값을 동적으로 결정하여 최적 우세점을 추출하는 알고리즘을 제안한다. 동적 임계값결정은 원본 모양의 윤곽선 길이 비와 근사화된 다각형의 둘레 길이 비를 알고리즘 수행시 점진적으로 검사하는 방법을 사용한다. 이 알고리즘은 윤곽선 특징을 반영하여 동적인 임계값 검사를 함으로써 의사점 수를 최대한 줄이며 최소 우세점만으로 모양 특징 정보를 추출할 수 있는 장점을 보인다. 제안한 방법은 객체의 윤곽선을 이루는 n개의 점에서 m개의 최적 우세점을 찾는데 평균 O(nlogn)이 걸린다. 최적화 평가는 7가지 서로 다른 특성을 가지는 70개의 합성 모양과 1,100개의 어류 모양에 대해 알고리즘을 적용하고 피 결과에 대해 평가 함수를 구성하여 수행하였다. 최적화율은 실험 모양들에 대해 평균0.92를 보였으며 기존 알고리즘에 대해 약 14% 최적화 성능 개선을 보였다. 제안한 알고리즘을 통해 추출한 모양 특징 정보는 정규화를 통해 이미지 분류와 인덱싱, 유사도 검색에 활용할 수 있다.

지문 영상의 특징 정보 추출을 위한 효율적인 주름선 추출 방법 (An Effective Crease Detection Method for Feature Information Extraction in Fingerprint Images)

  • 박성욱;이병진
    • 전자공학회논문지 IE
    • /
    • 제44권2호
    • /
    • pp.32-40
    • /
    • 2007
  • 본 논문에서는 지문 영상 내부에서 특징 정보 추출의 정확성을 향상시킬 수 있는 주름선 검출 방법을 제안한다. 먼저 각 방향별 슬릿의 평균 픽셀 값과 분산에 의하여 픽셀이 주름선 후보 영역에 해당하는지를 결정하고, 그 위치에 해당하는 주름선 방향을 검출한다. 그리고 후보 영역에 해당하는 픽셀의 주름선 방향에 의하여 8개의 영상으로 분해한다. 각 방향별 분해 영상에서 주름선 후보 영역 픽셀들이 형성하는 클러스터의 길이, 주름선 방향과 픽셀 분포 방향의 일치성, 융선 방향과 픽셀 분포방향의 차, 후보 픽셀들의 평균 픽셀 값을 이용하여 주름선 클러스터를 검출한다. 마지막으로, 각 방향별 분해 영상의 주름선 클러스터들을 합성함으로써 주름선 영역을 검출한다. 제안한 방법을 구현하고 주름선 검출을 수행한 결과, 91.4%의 높은 정확성을 확인하였다.

주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구 (A Study on Clutter Rejection using PCA and Stochastic features of Edge Image)

  • 강석종;김도종;배현덕
    • 전자공학회논문지SC
    • /
    • 제47권6호
    • /
    • pp.12-18
    • /
    • 2010
  • 주로 열상(FLIR: Forward-Looking Imfra-Red)을 이용하여 표적을 탐지하는 자동표적탐지(ATD: Automatic Target Detection)장비는 전처리단계, 잠재적 표적탐지 및 클러터 제거 등 3단계를 적용하여 표적을 탐지한다. 열상영상의 전처리단계 및 잠재적 표적탐지단계를 통해 열상영상의 모든 표적후보를 구한다. 이때, 표적후보군에는 표적 및 클러터가 공존하게 되는데, 클러터 제거 단계에서 표적후보군에 포함된 클러터를 제거하여 표적을 분류함으로서 오경보(False Alarm)를 줄이는 기능을 한다. 본 논문은 표적탐지단계 중 클러터 제거방법에 대한 연구내용에 대해 기술하였으며, 연구의 특징은 표적후보군에 포함된 클러터를 제거하기 위하여 표적후보영상의 주성분분석법(PCA: Principal Component Analysis)을 이용한 형태적 특징 및 외곽선 영상(Edge Image)의 통계적 특징을 이용한 표적제거기법을 제시하였다. 주성분분석법 특징값은 미리 선정한 대표표적에 대해 차원축소 고유벡터를 구한 후 표적후보군 영상을 고유벡터에 투영한 유클리드 거리를 이용하였으며, 통계적 특징은 표적후보군의 외곽선영상에 대해 분산 및 표준편차를 이용한 통계적 특징을 적용하였다. 주성분 특징과 통계적 특징을 이용하여 표적과 클러터를 구분하기 위해 선형판별법(LDA: Linear Discriminant Analysis)을 적용하였다. 제안된 알고리즘의 성능확인을 위해 수행한 시뮬레이션 결과 제안된 알고리즘이 주성분분석법 특징 또는 통계적 특징 등 단일특징을 적용하였을 때 보다 좋은 결과를 도출하였다.

영상 형태 특징을 이용한 내용 기반 검색 시스템 (Content-based Retrieval System using Image Shape Features)

  • 황병곤;정성호;이상열
    • 한국산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.33-38
    • /
    • 2001
  • 본 논문에서는 영상의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 본 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다. 약 170개의 폐곡선을 이루는 영상에 대한 검색 실험을 통하여 모양 정보에 대한 정확도를 측정하였다. 실험 결과 평균 Recall/Precision이 0.72/0.83를 보임으로써 제안된 방법이 유용함을 보였다.

  • PDF

척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식 (Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image)

  • 홍재성;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.233-242
    • /
    • 1998
  • 본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.

  • PDF

표정변화에 따른 얼굴 표정요소의 특징점 추적 (Tracking of Facial Feature Points related to Facial Expressions)

  • 최명근;정현숙;신영숙;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

양면 인쇄된 점자에서 후면 제거 및 전면 점자 인식 (In double side printed Braille characters, front side′s character recognition after remove back side′s.)

  • 최미영;홍경호
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 춘계학술발표논문집
    • /
    • pp.284-287
    • /
    • 2003
  • 본 논문은 시각 장애인을 위해 양면 인쇄된 점자를 스캐너를 통해서 읽어 들인 후, 영상 내의 잡음과 같은 미세 정보를 제거하는 전처리과정을 거친다 스캔한 영상을 임계값을 이용한 클리핑으로 이진영상을 만든 후 영상의 특징을 추출한다. 추출된 특징은 점자의 앞면과 뒷면으로 분류할 수 있다. 점자 앞면의 특징이 아래반원으로 나타나며 이러한 특징을 이용한 검출필터를 만들어 점자의 앞면만을 추출해낸다. 영상을 각각 수직방향, 수평방향으로 투영시켜 점자영상 분할을 위한 거리를 계산, 자간격과 줄간격을 구해 ½되는 지점에 선을 그어 분할한다. 분할된 점자 형태소를 낱자로 인식한다.

  • PDF

Edge detection 기반의 SIFT 알고리즘을 이용한 kidney 특징점 검출 방법 (Kidney's feature point extraction based on edge detection using SIFT algorithm in ultrasound image)

  • 김성중;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.89-90
    • /
    • 2019
  • 본 논문에서는 ultrasound image Right Parasagittal Liver에 edge detection을 적용한 후, 특징점 검출 알고리즘인 Scale Invarient Feature Transfom(SIFT)를 이용하여 특징점의 위치를 살펴보도록 한다. edge detection 알고리즘으로는 Canny edge detection과 Prewitt edge detection을 적용하기로 한다.

  • PDF

지문 영상의 분해 및 합성에 의한 주름선 검출방법 (Crease detection method using fingerprint image decomposition and composition)

  • 황운주;박성욱;박종관;박종욱
    • 전자공학회논문지CI
    • /
    • 제44권3호
    • /
    • pp.90-97
    • /
    • 2007
  • 지문인식 시스템이 높은 신뢰도를 가지기 위해서는, 정확한 특징 정보 검출이 이루어져야 한다. 본 논문에서는 지문 영상내부에서 특징 정보 추출의 정확성을 향상시킬 수 있는 효율적인 주름선 검출 방법을 제안한다. 제안한 방법은 각 화소에 대하여 1차원 방향성 slit을 적용한 다음 slit에 해당하는 화소의 평균 밝기 값과 분산을 이용하여, 화소가 주름선 후보 영역인지를 결정하고 그 위치에 해당하는 주름선 방향을 검출한다. 그리고 후보 영역에 해당하는 화소의 주름선 방향에 의하여 8개의 영상으로 분해한 다음, 각 방향별 분해 영상에서 주름선 영역의 성질을 이용하여 주름선 클러스터를 검출한다. 마지막으로 각 방향별 분해 영상의 주름선 클러스터들을 합성함으로써 주름선 영역을 검출한다. 제안한 방법을 구현하고 실험한 결과 주름선 검출에서 높은 정확성을 나타내었다.

유전 알고리즘을 이용한 특징 결합과 선택 (Feature Combination and Selection Using Genetic Algorithm for Character Recognition)

  • 이진선
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.152-158
    • /
    • 2005
  • 문자 패턴에서 추출한 서로 다른 특징 집합을 결합함으로써 문자 인식 시스템의 성능을 향상시킬 수 있다. 이때 결합된 특징 벡터의 차원을 줄이기 위해 특징 선택을 수행해야 한다. 이 논문은 문자 인식 문제에서 특징 결합과 선택을 위한 일반적인 틀을 제시한다. 또한 필기 숫자 인식을 위한 설계와 구현을 제시한다. 이 설계에서는 필기 숫자 패턴에서 DDD 특징 집합과 AGD 특징 집합을 추출하며 특징 선택을 위해 유전 알고리즘을 사용한다. 실험 결과 CENPARMI 필기 숫자 데이터베이스에 대해 0.7%의 정확률 향상을 얻었다.

  • PDF