• 제목/요약/키워드: 특징벡터 선택 알고리즘

검색결과 69건 처리시간 0.026초

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.

CORDIC 연산기 구현을 위한 Bit-level 하드웨어 시뮬레이션 (Bit-level Simulator for CORDIC Arithmetic based on carry-save adder)

  • 이성수;이정아
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1995년도 제4회 멀티미디어 산업기술 학술대회 논문집
    • /
    • pp.173-176
    • /
    • 1995
  • 본 논문에서 다루는 내용은 멀티미디어 정보처리시 이용되는 여러 신호 처리용 하드웨어에서 필요로 하는 벡터 트랜스퍼메이션(Vector Transformation)및 오소그날 트랜스퍼메이션(Orthogonal Transformation)에 유용할 뿐만 아니라 여러 형태의 다양한 연산(elementary function including trigonometric functions)을 하나의 단일화된 알고리즘으로 구현할 수 있게 한 CORDIC(Coordinate Rotation Digit Computer)연산[1][2]에 관한 연구이다. CORDIC 연산기를 실현함에 있어서 고속 연산을 위해 고속 가산기(fast adder)로서 CSA(Carry Save Adder)를 선택하는데, 본 논문의 연구 초점은 CORDIC연산기를 하드웨어로 실현하기 전에 Bit-Level의 시뮬레이터를 통하여, CSA의 특징상 발생할 수 있는 문제점어 대해 설명하고, 해결 방법[3]을 이용하여 원하는 값에 접근하는가를 확인하여 다양한 Bit의 조작으로 오차의 정도에 따라 유효한 CORDIC연산기를 실현하는데 도움이 되고자 한다.

  • PDF

Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현 (Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm)

  • 이태주;박승민;고광은;성원기;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.354-359
    • /
    • 2013
  • 본 논문을 통해서 우리는 최적화 알고리즘인 binary harmony search (BHS) 알고리즘을 이용하여 unsupervised nonlinear classifier를 구현하는 방안을 제시하였다. 패턴인식을 위한 기계학습이나 뇌파 신호의 분석 과정과 같이 벡터로 표현되는 특징들을 분류하는데 있어 다양한 알고리즘들이 제시되었다. 교사 학습기반의 분류 방식으로는 support vector machine과 같은 기법이 사용되어왔고, 비교사 학습 방법을 통한 분류 기법으로는 fuzzy c-mean (FCM)과 같은 알고리즘들이 사용되어 왔다. 그러나 기존에 사용해 왔던 분류 방법들은 비선형 데이터 분류에 적용하기 힘들거나 교사 학습을 적용하기 위해서 사전정보를 필요로 하는 문제점이 있다. 본 논문에서는 경험적 접근을 통해 공간상에 분포된 벡터 사이의 기하학적 거리를 최소로 만드는 벡터 집합을 선택하고 이를 하나의 클래스로 간주하는 방법을 적용한 분류법을 제시하였다. 비교 대상으로 FCM과 artificial neural network (ANN) 기반의 self-organizing map (SOM)을 제시하였다. 시뮬레이션에는 KEEL machine learing dataset을 사용하였고 그 결과, 제안된 방식이 기존 알고리즘에 비해 더 나은 우수성을 지니고 있음을 확인하였다.

2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할 (Corrupted Region Restoration based on 2D Tensor Voting)

  • 박종현;;이귀상
    • 정보처리학회논문지B
    • /
    • 제15B권3호
    • /
    • pp.205-210
    • /
    • 2008
  • 본 논문에서는 잡음에 의해 손상된 텍스트 영상으로부터 복원 및 분할을 위한 새로운 접근 방법을 제안한다. 제안된 방법은 손상된 영역의 복원을 위하여 색상 및 비색상 성분을 2차 대칭 스틱 텐서로 표현하고 보팅 기반의 손상된 영역을 복원하였으며, 마지막으로 클러스터링 방법에 의해 분할을 수행한다. 먼저 우리는 제안된 색상 선택함수에 의해 잡음에 강건한 색상과 비색상 성분을 선택한다. 두 번째 단계에서는 각각의 선택된 특징 벡터들은 스틱 텐서로 표현하였으며 제한된 보팅 커널의 필드내에서 이웃하는 보터들과 통신을 통하여 새롭게 정의된다. 따라서 2차 보팅 후 각각의 스틱 텐서는 이웃하는 텐서와 같은 특성을 가지며 손상된 영역들을 복원할 수 있다. 마지막으로 복원된 영상의 성능을 평가하기 위하여 적응적 평균 이동 알고리즘과 클러스터링 알고리즘을 이용하여 영상 분할을 수행하였다. 실험에서 제안된 방법은 전체적인 처리과정을 자동적으로 수행 가능하였으며 배경 및 객체의 영역에서 효율적인 복원 및 분할을 수행할 수 있었다.

신경회로망과 유전알고리즘을 이용한 근전신호 인식기법 (A Study on Electromyogram Signals Recognition Technique using Neural Network and Genetic Algorithms)

  • 신철규;이상민;이은실;권장우;장영건;홍승홍
    • 전자공학회논문지S
    • /
    • 제35S권11호
    • /
    • pp.176-183
    • /
    • 1998
  • 본 논문에서는 근전신호를 효과적으로 인식하기 위해 신경회로망에 유전알고리즘을 결합하여 근전신호를 인식하는 기법을 제안한다. 본 기법은 신경회로망이 내재한 단점들을 개선하여 근전신호의 인식률을 높이고 안정적인 인식을 행하는 것을 목표로 한다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상하게 된다. 그리고 절대 적분치, 영교차수등의 특징벡터 이외에 히든 마르코프 모델로 전처리를 하여 시간적으로 변하는 근전신호의 특성을 입력패턴에 반영하였다. 6가지의 기본운동을 대상으로 행한 실험결과, 제안된 인식기법은 기존의 일반적인 신경회로망의 학습규칙을 이용하여 인식했을 때보다 학습속도와 인식률이 향상되었고, 국부최소점으로 수렴하는 경우가 없어 실험에 실패하지 않고 안정적으로 근전신호의 패턴을 인식하였다.

  • PDF

음향 데이터 전송 시스템의 강인한 데이터 검출 성능을 위한 Gaussian Mixture Model 기반 연구 (Data Detection Algorithm Based on GMM in the Acoustic Data Transmission System)

  • 송지현;장준혁;김문기;김동건
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.136-141
    • /
    • 2011
  • 본 논문에서는 패턴 인식에서 우수한 성능을 보여주는 가우시안 혼합 모델을 이용하여 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 성능 향상을 위한 방법을 제안하였다. 기존의 MCLT 기반 음향 데이터 전송 시스템에 대해서 분석하고, 이를 기반으로 데이터 검출 알고리즘에서 우수한 성능을 보여주는 특징 벡터를 선택하여 GMM의 입력 벡터로 효과적으로 이용한다. 다양한 음원(rock, pop, classic, jazz)과 마이크-스피커 사이의 거리 (1∼5m)에서 시스템의 성능을 평가한 결과 GMM을 이용한 제안된 방법이 기존의 MCLT 기반 음향 데이터 전송 시스템의 데이터 검출 알고리즘보다 더욱 우수한 데이터 검출 성능을 보였다.

실시간 다중 객체 인식 및 추적 기법 (Real-time Multi-Objects Recognition and Tracking Scheme)

  • 김대훈;노승민;황인준
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.386-393
    • /
    • 2012
  • 본 논문에서는 객체의 관심점(interest points)에 대한 지역 특징 기술자를 이용하여 이미지나 동영상에서 다수의 관심 객체를 효과적으로 인식하고 추적하기 위한 기법을 제안한다. 이를 위해 먼저 대상이 되는 객체를 포함하는 다양한 이미지를 수집하고 SURF 알고리즘을 적용하여 객체의 관심점과 그들에 대한 지역 특징 기술자를 생성한다. 지역 특징에 대한 통계적인 분석을 통하여 관심점들 중에서 해당 객체의 특성을 가장 잘 표현하는 대표점(representative points)을 선택하고 이를 바탕으로 이미지에 존재하는 객체를 인식한다. 또한, 지역 특징 기술자의 정합을 응용하여 각 SURF 지점들의 움직임 벡터를 생성하고 이를 기반으로 실시간으로 객체를 추적한다. 제안하는 기법은 모든 객체를 독립적으로 다루기 때문에, 여러 개의 객체를 동시에 인식하고 추적할 수 있다. 다양한 실험을 통해, 동영상에서 객체의 존재 여부 및 종류를 신속하게 판별하고 관심 객체의 추적을 효과적으로 수행할 수 있음을 보인다.

효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출 (Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.200-208
    • /
    • 2003
  • 본 연구에서는 효율적인 학습규칙의 신경망 기반 독립성분분석기법을 이용한 영상신호의 분리와 특징추출을 제안하였다. 제안된 학습규칙은 할선법과 모멘트를 이용한 조합형 고정점 학습알고리즘이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $512\times512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상의 분리에 적용한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 $256\times256$ 픽셀의 10개 지문상과 $480\times225$ 픽셀의 지폐영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘보다도 빠른 특징추출 속도가 있음을 확인하였다. 한편 추출된 $16\times16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.

표적의 기하학적 변환에 강인한 SIFT 기반의 표적 분류 알고리즘 설계 (Design of a SIFT based Target Classification Algorithm robust to Geometric Transformation of Target)

  • 이희열;김종환;김세윤;최병재;문상호;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.116-122
    • /
    • 2010
  • 본 논문은 표적의 회전, 크기 변화, 이동 변화, 자세변화 등의 기하학적 변환에 강인한 표적 분류 방법을 제안한다. 우선 표적의 회전, 크기변화, 이동 변화에 대해서는 SIFT(Scale-Invariant Feature Transform) 특징 벡터들의 유사도, 스케일비, 오리엔테이션의 범위들을 이용한 CM(Confidence Map)에 기반하여 표적을 분류한다. 한편 표적의 자세 변화에 대응하기 위해 다양한 각도에서 획득한 표적 영상의 DB(database)를 이용한다. 각도의 범위는 실행 시간과 샘플링 간격에 따른 성능을 비교, 분석하여 결정한다. 제안한 표적 분류 방법의 성능을 평가하기 위해 기하학적 변화가 있는 여러 가지 영상에 대해 실험한다. 실험을 통해 제안 알고리즘이 우수한 분류 성능을 보임을 증명한다.

필터 및 특징 선택 기반의 적응형 얼굴 인식 방법 (An Adaptive Method For Face Recognition Based Filters and Selection of Features)

  • 조병모;김기한;이필규
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 2D 영상 이미지를 인식하는데 있어서, 테스트 이미지를 입력 받는 카메라의 설치 공간 및 설정 상황에 따라 밝기, 명암, 빛의 방향 등과 같은 인식의 성능에 영향을 끼칠 수 있는 요소들이 매우 많이 존재한다. 본 논문은 카메라가 위치한 환경 상의 최소의 샘플 이미지를 가지고, 그 환경에서 입력되는 영상의 인식 성공률을 높일 수 있는 적응형 얼굴 인식 방법을 제안하고 있다. 제안한 적응형 얼굴 인식은 두 개의 부분으로 구성되어 있는데, 하나는 환경 적응을 하기 위한 부분이고, 다른 하나는 얼굴 인식을 수행하는 부분이다. 전자인 환경 적응 모듈에서는 안정 상태 유전 알고리즘을 사용하여 인식기가 최적의 성능을 낼 수 있는 필터 조합과 필터 파라메터와 특징 벡터 집합 차원을 결정하고, 후자인 얼굴 인식 모듈에서는 그 결과를 사용하여 얼굴 인식 결과를 확인한다. 얼굴 인식 과정에서 이미지 사이의 유사도를 측정하기 위해서 가보 웨이블릿을 사용하였고, 인식의 결과를 도출하는 과정에서는 k-Nearest Neighbor을 사용하였다. 적응형 얼굴 인식 방법을 테스트 하기위해, 사인 함수의 가중치를 사용한 명암 노이즈, 임펄스 노이즈, 복합 노이즈에 관하여 각각 실험을 하였고, 진화 후에는 일반적으로 발생할 수 있는 노이즈에 대한 급격한 인식률 저하를 방지할 수 있음을 확인하였다.