• Title/Summary/Keyword: 특징벡터 선택 알고리즘

Search Result 69, Processing Time 0.022 seconds

Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution (미분진화 기반의 초단기 호우예측을 위한 특징 선택)

  • Seo, Jae-Hyun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.706-714
    • /
    • 2012
  • The Korea Meteorological Administration provided the recent four-years records of weather dataset for our very short-term heavy rainfall prediction. We divided the dataset into three parts: train, validation and test set. Through feature selection, we select only important features among 72 features to avoid significant increase of solution space that arises when growing exponentially with the dimensionality. We used a differential evolution algorithm and two classifiers as the fitness function of evolutionary computation to select more accurate feature subset. One of the classifiers is Support Vector Machine (SVM) that shows high performance, and the other is k-Nearest Neighbor (k-NN) that is fast in general. The test results of SVM were more prominent than those of k-NN in our experiments. Also we processed the weather data using undersampling and normalization techniques. The test results of our differential evolution algorithm performed about five times better than those using all features and about 1.36 times better than those using a genetic algorithm, which is the best known. Running times when using a genetic algorithm were about twenty times longer than those when using a differential evolution algorithm.

Faults Current Discrimination Using FCM (FCM을 이용한 고장전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Ji, Suk-Joon;Lee, Joon-Tark;Kim, Kwang-Back
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.458-460
    • /
    • 2007
  • RBF 네트워크의 중간층은 클러스터링 하는 층으로 주어진 자료 집합을 유사한 클러스터들로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링 하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 이용하고자 하였다. 그리하여 본 논문에서는 고장 전류의 특성을 해석하여 그 원인을 판단, 분류하기 위하여 전력계통의 고장 기록 장치로부터 얻어지는 선로의 전류 데이터를 FCM을 이용 분류하여 다양한 고장 모드를 판별할 수 있었다.

  • PDF

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF

Road Surface Classification Using Weight-Based Clustering Algorithm (가중치 기반 클러스터링 기술을 이용한 도로표면 유형 분류 알고리즘)

  • Kim, Hyungmin;Song, Joongseok;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.146-149
    • /
    • 2014
  • 최근 자동차 산업과 IT 기술의 융합이 활발해지면서 스마트카, 자율주행 자동차(무인 자동차)와 같은 지능형 자동차 개발이 활발히 진행되고 지능형 자동차의 비전 기반 기술개발도 활발히 진행되고 있다. 고속도로와 같이 포장된 도로나 자갈길과 같은 비포장 도로에서도 운전자의 승차감을 고려한 능동적 안전시스템과 안정적인 자율주행 자동차의 주행능력을 보장하는 기술들 중 도로 유형을 판단하는 것이 중요 요소 중 하나이다. 따라서 본 논문에서는 가중치 기반 클러스터링 기술을 이용하여 도로표면 유형을 분류하는 알고리즘을 제안한다. 아스팔트, 자갈길, 흙길, 눈길의 도로표면 영상 데이터를 히스토그램의 분포도와 최고점 위치, 에지 영상의 에지량, 채도성분을 이용하여 특징값을 추출하고 클러스터를 구성한다. 분류할 입력 도로표면 영상에 대해 특징값을 분석한 후 탐색범위 내 선택된 각 클러스터의 벡터와의 거리를 측정하여 가중치를 계산하고 가중치가 높은 클러스터를 분류하여 입력 영상에 대한 도로표면을 결정한다. 실험결과 제안하는 방법이 각 도로표면 영상의 특징값과 이를 이용한 가중치만을 이용하여 약 91.25%의 정확도로 도로의 표면을 분류해 내는 것을 볼 수 있었다.

  • PDF

Improved SIM Algorithm for Contents-based Image Retrieval (내용 기반 이미지 검색을 위한 개선된 SIM 방법)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.49-59
    • /
    • 2009
  • Contents-based image retrieval methods are in general more objective and effective than text-based image retrieval algorithms since they use color and texture in search and avoid annotating all images for search. SIM(Self-organizing Image browsing Map) is one of contents-based image retrieval algorithms that uses only browsable mapping results obtained by SOM(Self Organizing Map). However, SOM may have an error in selecting the right BMU in learning phase if there are similar nodes with distorted color information due to the intensity of light or objects' movements in the image. Such images may be mapped into other grouping nodes thus the search rate could be decreased by this effect. In this paper, we propose an improved SIM that uses HSV color model in extracting image features with color quantization. In order to avoid unexpected learning error mentioned above, our SOM consists of two layers. In learning phase, SOM layer 1 has the color feature vectors as input. After learning SOM Layer 1, the connection weights of this layer become the input of SOM Layer 2 and re-learning occurs. With this multi-layered SOM learning, we can avoid mapping errors among similar nodes of different color information. In search, we put the query image vector into SOM layer 2 and select nodes of SOM layer 1 that connects with chosen BMU of SOM layer 2. In experiment, we verified that the proposed SIM was better than the original SIM and avoid mapping error effectively.

  • PDF

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Enhancement Voiced/Unvoiced Sounds Classification for 3GPP2 SMV Employing GMM (3GPP2 SMV의 실시간 유/무성음 분류 성능 향상을 위한 Gaussian Mixture Model 기반 연구)

  • Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.111-117
    • /
    • 2008
  • In this paper, we propose an approach to improve the performance of voiced/unvoiced (V/UV) decision under background noise environments for the selectable mode vocoder (SMV) of 3GPP2. We first present an effective analysis of the features and the classification method adopted in the SMV. And then feature vectors which are applied to the GMM are selected from relevant parameters of the SMV for the efficient voiced/unvoiced classification. For the purpose of evaluating the performance of the proposed algorithm, different experiments were carried out under various noise environments and yields better results compared with the conventional scheme of the SMV.

A Study of Car Plate Verification using Neural Network (신경망을 이용한 번호판 영역 검증에 관한 연구)

  • 강동구;이병모;최선아;김성우;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.667-669
    • /
    • 2002
  • 번호판 인식은 번호판 영역 추출 세그멘테이션, 인식의 3단계로 나눈다. 일반적으로 번호판 영역을 검출하는 과정에서 여러 후보영역이 추출되는데 검증 과정을 통해 그 중 하나를 선택한다. 따라서 적절한 검증 방법은 번호판 인식의 신뢰성을 높히기 위해 필수적이다. 본 논문은 다층 신경망에 사용하는 대표적인 알고리즘 중 하나인 역전과 알고리즘을 이용하여 번호판 후보 영역을 검증하는 방법을 제시한다. 신경망을 통한 학습을 위해 우선 적절한 훈련 이미지를 수집해야한다. 특히 번호판 이미지가 아닌 훈련 데이터를 수집하는 것은 어려운 문제이다. 본 논문에서는 효과석인 훈련 데이터 수집의 방법과 특징 벡터 생성에 대하여 제안하고 이 방법의 효용성을 실험을 통하여 검증한다.

  • PDF

Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq (RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.

EEG based Vowel Feature Extraction for Speech Recognition System using International Phonetic Alphabet (EEG기반 언어 인식 시스템을 위한 국제음성기호를 이용한 모음 특징 추출 연구)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The researchs using brain-computer interface, the new interface system which connect human to macine, have been maded to implement the user-assistance devices for control of wheelchairs or input the characters. In recent researches, there are several trials to implement the speech recognitions system based on the brain wave and attempt to silent communication. In this paper, we studied how to extract features of vowel based on international phonetic alphabet (IPA), as a foundation step for implementing of speech recognition system based on electroencephalogram (EEG). We conducted the 2 step experiments with three healthy male subjects, and first step was speaking imagery with single vowel and second step was imagery with successive two vowels. We selected 32 channels, which include frontal lobe related to thinking and temporal lobe related to speech function, among acquired 64 channels. Eigen value of the signal was used for feature vector and support vector machine (SVM) was used for classification. As a result of first step, we should use over than 10th order of feature vector to analyze the EEG signal of speech and if we used 11th order feature vector, the highest average classification rate was 95.63 % in classification between /a/ and /o/, the lowest average classification rate was 86.85 % with /a/ and /u/. In the second step of the experiments, we studied the difference of speech imaginary signals between single and successive two vowels.