본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.
본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.
화력발전소의 중요 구성품인 보일러 튜브의 예기치 못한 누설 사고로 인해 수억원에 해당하는 손실이 발생하고 있다. 본 논문에서는 보일러 튜브의 누설 감지를 위해 유전 알고리즘을 이용하여 추출 가능한 특징들 중 누수 감지에 유용한 특징들을 선택하고, 선택된 특징으로 서포트 벡터 머신을 이용하여 보일러 튜브의 누설 감지하는 방법을 제안한다. 이는 뛰어난 성능을 보였으며, 향후 본 기술을 이용하면 발전소의 손실 예방에 크게 도움이 될 것으로 기대된다.
문자 패턴에서 추출한 서로 다른 특징 집합을 결합함으로써 문자 인식 시스템의 성능을 향상시킬 수 있다. 이때 결합된 특징 벡터의 차원을 줄이기 위해 특징 선택을 수행해야 한다. 이 논문은 문자 인식 문제에서 특징 결합과 선택을 위한 일반적인 틀을 제시한다. 또한 필기 숫자 인식을 위한 설계와 구현을 제시한다. 이 설계에서는 필기 숫자 패턴에서 DDD 특징 집합과 AGD 특징 집합을 추출하며 특징 선택을 위해 유전 알고리즘을 사용한다. 실험 결과 CENPARMI 필기 숫자 데이터베이스에 대해 0.7%의 정확률 향상을 얻었다.
본 논문은 글자 문서를 배경으로 사용자의 손가락 이동에 의하여 일정한 영역을 그린 후, 영역내의 한글영상을 편집 가능한 에디터에 출력하는 시스템을 구현하였다. 영상의 전처리 단계에서는 문서 배경과 손영역을 분리하고 최대 원형 이동법을 이용하여 손의 무게 중심점을 추출한다. 원형 패턴 벡터 알고리즘을 사용하여 손을 인식한 후, 거리 스펙트럼으로 손가락 위치를 찾는다. 손가락의 움직임에 의해 선택되어진 문자 영역을 추출한 후, 한글 자소 간 히스토그램을 이용하여 추출된 문자 이미지 영역에서 문자단위로 분할하고 다양한 크기의 문자를 표준화한다. 퍼지 추론을 적용한 원형 패턴 벡터 알고리즘을 이용하여 표준 패턴문자와 입력문자의 특징벡터를 비교하여 문자를 인식하게 함으로써 사용자가 원하는 영역의 문자들을 수정 가능한 문서로 변환하였다
본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.
RNA 시퀀싱 데이터 (RNA-seq)에서 수집된 많은 양의 데이터에 변별력이 확실한 특징 패턴 선택이 유용하며, 차별성 있는 특징을 정의하는 것이 쉽지 않다. 이러한 이유는 빅데이터 자체의 특징으로써, 많은 양의 데이터에 중복이 포함되어 있기 때문이다. 해당이슈 때문에, 컴퓨터를 사용하여 처리하는 분야에서 특징 선택은 랜덤 포레스트, K-Nearest, 및 서포트-벡터-머신 (SVM)과 같은 다양한 머신러닝 기법을 도입하여 해결하려고 노력한다. 해당 분야에서도 SVM-기반 제약을 사용하는 서포트-벡터-머신-재귀-특징-제거(SVM-RFE) 알고리즘은 많은 연구자들에 의해 꾸준히 연구 되어 왔다. 본 논문의 제안 방법은 RNA 시퀀싱 데이터에서 빅-데이터처리를 위해 SVM-RFE에 강화학습의 Q-learning을 접목하여, 중요도가 추가되는 벡터를 세밀하게 추출함으로써, 변별력이 확실한 특징선택 방법을 제안한다. NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 리보솜 단백질 클러스터 데이터에 본 논문에서 제안된 알고리즘을 적용하고, 해당 알고리즘에 의해 나온 결과와 이전 공개된 SVM의 Welch' T를 적용한 알고리즘의 결과를 비교 평가하였다. 해당결과의 비교가 본 논문에서 제안하는 알고리즘이 좀 더 나은 성능을 보여줌을 알 수 있다.
본 논문은 문서 분류의 전처리 단계인 특징 선택을 위해 의미를 고려한 최적의 특징 선택 방법을 제안한다. 특징 선택은 불필요한 특징을 제거하고 분류에 필요한 특징을 추출하는 작업으로 분류 작업에서 매우 중요한 역할을 한다. 특징 선택 기법으로 특징의 의미를 파악하여 특징을 선택하는 LSA(Latent Semantic Analysis) 기법을 사용하지만 기본 LSA는 분류 작업에 특성화 된 기법이 아니므로 지도적 학습을 통해 분류에 적합하도록 개선된 지도적 LSA를 사용한다. 지도적 LSA를 통해 선택된 특징들로부터 최적화 기법인 유전 알고리즘을 사용하여 더 최적의 특징들을 추출한다. 마지막으로, 추출한 특징들로 분류할 문서를 표현하고 SVM (Support Vector Machine)을 이용한 특정 분류기를 사용하여 분류를 수행하였다. 지도적 LSA를 통해 의미를 고려하고 유전 알고리즘을 통해 최적의 특징 집합을 찾음으로써 높은 분류 성능과 효율성을 보일 것이라 가정하였다. 인터넷 뉴스 기사를 대상으로 분류 실험을 수행한 결과 적은 수의 특징들로 높은 분류 성능을 확인할 수 있었다.
대부분의 빈발 부분그래프를 이용한 그래프 분류 알고리즘들은 빈발 부분그래프를 마이닝하여 개별적인 빈발 부분그래프의 포함 여부를 특징 벡터로 구성하는 단계와 기계학습 알고리즘들을 훈련시켜 분류 모델을 수립하는 단계로 구성된다. 이와 같은 그래프 분류 알고리즘들은 부분그래프의 개별적인 존재 여부만을 이용하여 특징을 구성하기 때문에 변별력이 떨어지는 문제점이 있다. 본 논문에서는 빈발 부분그래프들이 동시 발생하는 특징 벡터의 변별력을 반영할 수 있는 특징선택 기법을 적용한 모델 기반 탐색트리 기법을 제안한다. 동시 발생 부분그래프를 특징으로 사용하여 변별력을 향상시킬 수 있으며, 모델기반 탐색 트리를 사용하여 제안하는 기법이 기존의 방법보다 더 높은 그래프 분류 성능을 보이는 것을 입증하였다.
본 논문에서는 관형 철탑의 용접부 결함을 상시적으로 감시하기 위하여 초음파 탐상 신호에 대한 기계학습 알고리즘의 적용 방법을 제시하고 분석하였다. 기계학습 방법으로는 유전자 알고리즘에 의한 특징 선택과 서포트 벡터머신을 이용한 탐상 신호 분류 방법을 사용하였다. 특징 선택에서는 30개의 후보 특징들 가운데 피크, 히스토그램 하한 경계, 정규 음로그우도가 선택되었으며, 이들은 결함의 깊이에 따른 신호의 차이를 명확하게 나타내었다. 또한, 선택된 특징들을 서포트 벡터 머신에 적용한 결과 정상 부위와 결함 부위를 완벽하게 분류할 수 있는 것으로 나타났다. 따라서 본 연구의 결과는 향후 초음파 신호 기반 결함 성장 조기 감지시스템의 개발과 이를 통한 에너지 송전 관련 산업에 유용하게 사용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.