• 제목/요약/키워드: 특징벡터 선택 알고리즘

검색결과 69건 처리시간 0.026초

Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘 (Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model)

  • 문선국;최택성;박영철;윤대희
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.965-974
    • /
    • 2007
  • 본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.

PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구 (A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithms)

  • 김웅기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1857_1858
    • /
    • 2009
  • 본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.

  • PDF

유전알고리즘과 서포트 벡터 머신을 이용한 보일러 튜브 누설 감지 방법 (A Method of Detecting Boiler Tube Leakage using a Genetic Algorithm and Support Vector Machines)

  • 김영훈;김재영;정인규;김유현;김종면
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.55-56
    • /
    • 2018
  • 화력발전소의 중요 구성품인 보일러 튜브의 예기치 못한 누설 사고로 인해 수억원에 해당하는 손실이 발생하고 있다. 본 논문에서는 보일러 튜브의 누설 감지를 위해 유전 알고리즘을 이용하여 추출 가능한 특징들 중 누수 감지에 유용한 특징들을 선택하고, 선택된 특징으로 서포트 벡터 머신을 이용하여 보일러 튜브의 누설 감지하는 방법을 제안한다. 이는 뛰어난 성능을 보였으며, 향후 본 기술을 이용하면 발전소의 손실 예방에 크게 도움이 될 것으로 기대된다.

  • PDF

유전 알고리즘을 이용한 특징 결합과 선택 (Feature Combination and Selection Using Genetic Algorithm for Character Recognition)

  • 이진선
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.152-158
    • /
    • 2005
  • 문자 패턴에서 추출한 서로 다른 특징 집합을 결합함으로써 문자 인식 시스템의 성능을 향상시킬 수 있다. 이때 결합된 특징 벡터의 차원을 줄이기 위해 특징 선택을 수행해야 한다. 이 논문은 문자 인식 문제에서 특징 결합과 선택을 위한 일반적인 틀을 제시한다. 또한 필기 숫자 인식을 위한 설계와 구현을 제시한다. 이 설계에서는 필기 숫자 패턴에서 DDD 특징 집합과 AGD 특징 집합을 추출하며 특징 선택을 위해 유전 알고리즘을 사용한다. 실험 결과 CENPARMI 필기 숫자 데이터베이스에 대해 0.7%의 정확률 향상을 얻었다.

  • PDF

손가락 이동에 의해 선택된 영역의 인쇄체 한글 영상 문서화 (Documentation of Printed Hangul Images of the Selected Area by Finger Movement)

  • 백승복;손영선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.51-54
    • /
    • 2002
  • 본 논문은 글자 문서를 배경으로 사용자의 손가락 이동에 의하여 일정한 영역을 그린 후, 영역내의 한글영상을 편집 가능한 에디터에 출력하는 시스템을 구현하였다. 영상의 전처리 단계에서는 문서 배경과 손영역을 분리하고 최대 원형 이동법을 이용하여 손의 무게 중심점을 추출한다. 원형 패턴 벡터 알고리즘을 사용하여 손을 인식한 후, 거리 스펙트럼으로 손가락 위치를 찾는다. 손가락의 움직임에 의해 선택되어진 문자 영역을 추출한 후, 한글 자소 간 히스토그램을 이용하여 추출된 문자 이미지 영역에서 문자단위로 분할하고 다양한 크기의 문자를 표준화한다. 퍼지 추론을 적용한 원형 패턴 벡터 알고리즘을 이용하여 표준 패턴문자와 입력문자의 특징벡터를 비교하여 문자를 인식하게 함으로써 사용자가 원하는 영역의 문자들을 수정 가능한 문서로 변환하였다

  • PDF

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • 장도원;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택 (Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning)

  • 김차영
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.21-27
    • /
    • 2019
  • RNA 시퀀싱 데이터 (RNA-seq)에서 수집된 많은 양의 데이터에 변별력이 확실한 특징 패턴 선택이 유용하며, 차별성 있는 특징을 정의하는 것이 쉽지 않다. 이러한 이유는 빅데이터 자체의 특징으로써, 많은 양의 데이터에 중복이 포함되어 있기 때문이다. 해당이슈 때문에, 컴퓨터를 사용하여 처리하는 분야에서 특징 선택은 랜덤 포레스트, K-Nearest, 및 서포트-벡터-머신 (SVM)과 같은 다양한 머신러닝 기법을 도입하여 해결하려고 노력한다. 해당 분야에서도 SVM-기반 제약을 사용하는 서포트-벡터-머신-재귀-특징-제거(SVM-RFE) 알고리즘은 많은 연구자들에 의해 꾸준히 연구 되어 왔다. 본 논문의 제안 방법은 RNA 시퀀싱 데이터에서 빅-데이터처리를 위해 SVM-RFE에 강화학습의 Q-learning을 접목하여, 중요도가 추가되는 벡터를 세밀하게 추출함으로써, 변별력이 확실한 특징선택 방법을 제안한다. NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 리보솜 단백질 클러스터 데이터에 본 논문에서 제안된 알고리즘을 적용하고, 해당 알고리즘에 의해 나온 결과와 이전 공개된 SVM의 Welch' T를 적용한 알고리즘의 결과를 비교 평가하였다. 해당결과의 비교가 본 논문에서 제안하는 알고리즘이 좀 더 나은 성능을 보여줌을 알 수 있다.

의미 기반 유전 알고리즘을 사용한 특징 선택 (Semantic-based Genetic Algorithm for Feature Selection)

  • 김정호;인주호;채수환
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 논문은 문서 분류의 전처리 단계인 특징 선택을 위해 의미를 고려한 최적의 특징 선택 방법을 제안한다. 특징 선택은 불필요한 특징을 제거하고 분류에 필요한 특징을 추출하는 작업으로 분류 작업에서 매우 중요한 역할을 한다. 특징 선택 기법으로 특징의 의미를 파악하여 특징을 선택하는 LSA(Latent Semantic Analysis) 기법을 사용하지만 기본 LSA는 분류 작업에 특성화 된 기법이 아니므로 지도적 학습을 통해 분류에 적합하도록 개선된 지도적 LSA를 사용한다. 지도적 LSA를 통해 선택된 특징들로부터 최적화 기법인 유전 알고리즘을 사용하여 더 최적의 특징들을 추출한다. 마지막으로, 추출한 특징들로 분류할 문서를 표현하고 SVM (Support Vector Machine)을 이용한 특정 분류기를 사용하여 분류를 수행하였다. 지도적 LSA를 통해 의미를 고려하고 유전 알고리즘을 통해 최적의 특징 집합을 찾음으로써 높은 분류 성능과 효율성을 보일 것이라 가정하였다. 인터넷 뉴스 기사를 대상으로 분류 실험을 수행한 결과 적은 수의 특징들로 높은 분류 성능을 확인할 수 있었다.

동시 발생 빈발 부분그래프를 이용한 그래프 분류 (Graph Classification using Co-occurrent Frequent Subgraphs)

  • 박기성;한용구;이영구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.109-111
    • /
    • 2011
  • 대부분의 빈발 부분그래프를 이용한 그래프 분류 알고리즘들은 빈발 부분그래프를 마이닝하여 개별적인 빈발 부분그래프의 포함 여부를 특징 벡터로 구성하는 단계와 기계학습 알고리즘들을 훈련시켜 분류 모델을 수립하는 단계로 구성된다. 이와 같은 그래프 분류 알고리즘들은 부분그래프의 개별적인 존재 여부만을 이용하여 특징을 구성하기 때문에 변별력이 떨어지는 문제점이 있다. 본 논문에서는 빈발 부분그래프들이 동시 발생하는 특징 벡터의 변별력을 반영할 수 있는 특징선택 기법을 적용한 모델 기반 탐색트리 기법을 제안한다. 동시 발생 부분그래프를 특징으로 사용하여 변별력을 향상시킬 수 있으며, 모델기반 탐색 트리를 사용하여 제안하는 기법이 기존의 방법보다 더 높은 그래프 분류 성능을 보이는 것을 입증하였다.

관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석 (Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower)

  • 민태홍;유현탁;김형진;최병근;김현식;이기승;강석근
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.515-522
    • /
    • 2021
  • 본 논문에서는 관형 철탑의 용접부 결함을 상시적으로 감시하기 위하여 초음파 탐상 신호에 대한 기계학습 알고리즘의 적용 방법을 제시하고 분석하였다. 기계학습 방법으로는 유전자 알고리즘에 의한 특징 선택과 서포트 벡터머신을 이용한 탐상 신호 분류 방법을 사용하였다. 특징 선택에서는 30개의 후보 특징들 가운데 피크, 히스토그램 하한 경계, 정규 음로그우도가 선택되었으며, 이들은 결함의 깊이에 따른 신호의 차이를 명확하게 나타내었다. 또한, 선택된 특징들을 서포트 벡터 머신에 적용한 결과 정상 부위와 결함 부위를 완벽하게 분류할 수 있는 것으로 나타났다. 따라서 본 연구의 결과는 향후 초음파 신호 기반 결함 성장 조기 감지시스템의 개발과 이를 통한 에너지 송전 관련 산업에 유용하게 사용될 수 있을 것으로 기대된다.