• Title/Summary/Keyword: 특징벡터 선택 알고리즘

Search Result 69, Processing Time 0.03 seconds

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithms (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1857_1858
    • /
    • 2009
  • 본 논문에서는 PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택 방법에 대하여 제안한다. 2차원 얼굴이미지의 히스토그램 분표값에서 정규화합 연산을 이용한 히스토그램 평활화 기법을 거쳐 대비효과를 주어 화질을 개선시켜 준다. PCA는 2차원 얼굴이미지를 이용하여 공분산 행렬을 구한 후 그것의 고유값에 따른 고유벡터를 구하여 얼굴인식에 사용될 특징 벡터들을 추출한다. 또한 추출된 특징벡터 중에서 얼굴인식 성능에 중요한 요소가 되는 특징 벡터들을 입자 군집 최적화 알고리즘을 이용하여 최적화한다. 다항식 기반 RBF 신경회로망을 사용하여 얼굴인식 성능을 평가한다. 본 논문에서 제안된 방법을 통해 최적화된 특징벡터와 얼굴인식률과의 관계를 알 수 있다.

  • PDF

A Method of Detecting Boiler Tube Leakage using a Genetic Algorithm and Support Vector Machines (유전알고리즘과 서포트 벡터 머신을 이용한 보일러 튜브 누설 감지 방법)

  • Kim, Young-Hun;Kim, Jae-Young;Jeong, In-kyu;Kim, Yu-Hyun;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.55-56
    • /
    • 2018
  • 화력발전소의 중요 구성품인 보일러 튜브의 예기치 못한 누설 사고로 인해 수억원에 해당하는 손실이 발생하고 있다. 본 논문에서는 보일러 튜브의 누설 감지를 위해 유전 알고리즘을 이용하여 추출 가능한 특징들 중 누수 감지에 유용한 특징들을 선택하고, 선택된 특징으로 서포트 벡터 머신을 이용하여 보일러 튜브의 누설 감지하는 방법을 제안한다. 이는 뛰어난 성능을 보였으며, 향후 본 기술을 이용하면 발전소의 손실 예방에 크게 도움이 될 것으로 기대된다.

  • PDF

Feature Combination and Selection Using Genetic Algorithm for Character Recognition (유전 알고리즘을 이용한 특징 결합과 선택)

  • Lee Jin-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.152-158
    • /
    • 2005
  • By using a combination of different feature sets extracted from input character patterns, we can improve the character recognition system performance. To reduce the dimensionality of the combined feature vector, we conduct the feature selection. This paper proposes a general framework for the feature combination and selection for character recognition problems. It also presents a specific design for the handwritten numeral recognition. Tn the design, DDD and AGD feature sets are extracted from handwritten numeral patterns, and a genetic algorithm is used for the feature selection. Experimental result showed a significant accuracy improvement by about 0.7% for the CENPARMI handwrittennumeral database.

  • PDF

Documentation of Printed Hangul Images of the Selected Area by Finger Movement (손가락 이동에 의해 선택된 영역의 인쇄체 한글 영상 문서화)

  • 백승복;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.51-54
    • /
    • 2002
  • 본 논문은 글자 문서를 배경으로 사용자의 손가락 이동에 의하여 일정한 영역을 그린 후, 영역내의 한글영상을 편집 가능한 에디터에 출력하는 시스템을 구현하였다. 영상의 전처리 단계에서는 문서 배경과 손영역을 분리하고 최대 원형 이동법을 이용하여 손의 무게 중심점을 추출한다. 원형 패턴 벡터 알고리즘을 사용하여 손을 인식한 후, 거리 스펙트럼으로 손가락 위치를 찾는다. 손가락의 움직임에 의해 선택되어진 문자 영역을 추출한 후, 한글 자소 간 히스토그램을 이용하여 추출된 문자 이미지 영역에서 문자단위로 분할하고 다양한 크기의 문자를 표준화한다. 퍼지 추론을 적용한 원형 패턴 벡터 알고리즘을 이용하여 표준 패턴문자와 입력문자의 특징벡터를 비교하여 문자를 인식하게 함으로써 사용자가 원하는 영역의 문자들을 수정 가능한 문서로 변환하였다

  • PDF

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning (SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data sets. Variable selection of feature pattern aims at differential expressed gene set that is significantly relevant for a special task. This issues are complex and important in many domains, for example. In terms of a computational research field of machine learning, selection of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the well-known machine learning algorithms is SVM, which is classical as well as original. The one of a member of SVM-criterion is Support Vector Machine-Recursive Feature Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm of the SVM-RFE with Q-learning in reinforcement learning for better variable selection of feature pattern. By comparing our proposed algorithm with the well-known SVM-RFE combining Welch' T in published data, our result can show that the criterion from weight vector of SVM-RFE enhanced by Q-learning has been improved by an off-policy by a more exploratory scheme of Q-learning.

Semantic-based Genetic Algorithm for Feature Selection (의미 기반 유전 알고리즘을 사용한 특징 선택)

  • Kim, Jung-Ho;In, Joo-Ho;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, an optimal feature selection method considering sematic of features, which is preprocess of document classification is proposed. The feature selection is very important part on classification, which is composed of removing redundant features and selecting essential features. LSA (Latent Semantic Analysis) for considering meaning of the features is adopted. However, a supervised LSA which is suitable method for classification problems is used because the basic LSA is not specialized for feature selection. We also apply GA (Genetic Algorithm) to the features, which are obtained from supervised LSA to select better feature subset. Finally, we project documents onto new selected feature subset and classify them using specific classifier, SVM (Support Vector Machine). It is expected to get high performance and efficiency of classification by selecting optimal feature subset using the proposed hybrid method of supervised LSA and GA. Its efficiency is proved through experiments using internet news classification with low features.

Graph Classification using Co-occurrent Frequent Subgraphs (동시 발생 빈발 부분그래프를 이용한 그래프 분류)

  • Park, Ki-Sung;Han, Yong-Koo;Lee, Young-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.109-111
    • /
    • 2011
  • 대부분의 빈발 부분그래프를 이용한 그래프 분류 알고리즘들은 빈발 부분그래프를 마이닝하여 개별적인 빈발 부분그래프의 포함 여부를 특징 벡터로 구성하는 단계와 기계학습 알고리즘들을 훈련시켜 분류 모델을 수립하는 단계로 구성된다. 이와 같은 그래프 분류 알고리즘들은 부분그래프의 개별적인 존재 여부만을 이용하여 특징을 구성하기 때문에 변별력이 떨어지는 문제점이 있다. 본 논문에서는 빈발 부분그래프들이 동시 발생하는 특징 벡터의 변별력을 반영할 수 있는 특징선택 기법을 적용한 모델 기반 탐색트리 기법을 제안한다. 동시 발생 부분그래프를 특징으로 사용하여 변별력을 향상시킬 수 있으며, 모델기반 탐색 트리를 사용하여 제안하는 기법이 기존의 방법보다 더 높은 그래프 분류 성능을 보이는 것을 입증하였다.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.