• Title/Summary/Keyword: 특징값추출

검색결과 952건 처리시간 0.032초

곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출 (Feature Extraction Using Trace Transform for Insect footprint Recognition)

  • 신복숙;차의영;조경원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF

Trace 변환과 퍼지 가중치 평균을 이용한 곤충 발자국 인식 (Insect Footprint Recognition Using Trace Transform and Fuzzy Weighted Mean)

  • 신복숙;김광백;우영운
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.143-147
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하는 기법을 제안한다. Trace 변환을 이용하면 패턴의 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 이 방법은 특징값을 추출하기 위해서 병렬로 표현되는 trace-line을 따라 특징들을 일차적으로 도출하고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 이동, 회전 반사에 관계없이 동일한 특징값이 추출됨을 확인할 수 있고, 곤충발자국의 고유한 패턴을 찾아 인식하기 위해서 추출된 특징값들은 퍼지 가중치 평균을 이용하여 인식 실험을 수행하고 그 결과를 제시하였다.

  • PDF

다중 특징값의 조합을 이용한 자동적 이미지 카테고리화 방법 (Automatic Image Categorization using Combination of Multiple Features)

  • 양승지;윤정현;노용만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.39-42
    • /
    • 2002
  • 본 논문에서는 내용 기반 이미지 검색 및 필터링 시스템을 위한 카테고리 식별 방법을 제안한다. 제안된 방법에서는 식별 가능한 카테고리를 사전에 정의하고, 정의된 카테고리를 대표할 수 있는 이미지들을 수집한다. 다음으로, 이들로부터 다중의 내용 기반 특징값을 추출하고, 추출된 특징값들로 카테고리 데이터베이스를 구성한다. 카테고리를 식별할 질의 이미지가 입력으로 들어오면, 질의 이미지로부터 추출된 다중 특징값들을 각 카테고리의 단일 특징값과 각각 비교함으로써, 카테고리를 대표하는 다중의 유사도 거리값을 측정한다. 각 카테고리를 대표하는 다중의 유사도 거리값들은 두 가지 연산 방법에 의해 조합되는데, 조합 방법은 각각의 단일 특징값이 각 카테고리 식별에 미치는 영향을 고려하여 정의된다. 최종적으로, 각 카테고리의 조합된 유사도 거리값을 비교한 다음, 가장 유사도가 큰 카테고리를 해당 질의 이미지의 카테고리로 식별한다.

  • PDF

이미지 유사도를 측정을 위한 컬러특징값에 대한 연구 (A Study on Color Features for Image Similarity)

  • 최영미;주문원;윤태복
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.373-374
    • /
    • 2009
  • 이 논문에서는 이미지간의 유사도를 측정하기 위하여 컬러 특징값을 추출하는 한 방법을 제시하고자 한다. 컬러특징값은 다양한 형태로 추출될 수 있지만 자연적인 조명 환경하에서 어느 정도 invariance consistency 특징을 유지하는 방법을 찾아내는 것이 중요하다. 컬러 coocurrence 특징값은 많은 연구가 진행되어 여러 응용에서 적용되고 있지만 여기서는 컬러의 invariance 공간에 대한 coocurrence 특징값을 추출하여 이미지 유사도를 측정하는 방식을 제시하고자 한다.

자동차 전조등 영상검색을 위한 향상된 유효 특징 추출 방법 (The Advanced Effective Feature Extraction for Image Retrieval of an Automobile Head Lamp)

  • 손병환;이병일;손성건;최흥국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.261-264
    • /
    • 2002
  • 자동차 전조등에서 나오는 데이터는 다양한 패턴을 가지는 영상자료와 부분적으로 보이는 문자자료이다. 내용기반 영상검색을 통해 자동차 전조등에서 검사자가 판독하는 텍스트와 부분적인 전조등의 영상정보로 차량의 정보를 추출하기 위한 검색 방법을 국립과학수사연구소의 자료를 기반으로 설계하였으며, 영상검색에 사용된 영상특징값의 구성과 영상 검색방법을 연구하였다. 본 논문에서는 영상데이터의 검색을 위해 효과적인 영상특징이 추출 되도록 향상된 방법론을 제시하였다. 특징함수에 대한 유효성 검증을 위해 샘플 영상에서 각 후보 특징함수들에 대한 결과값들을 비교하였으며, 이를 기반으로 유효한 특징함수를 찾아서 검색에 사용되어지도록 구성하였다. 사용되어진 영상의 특징값은 전조등 영상이 가지는 다수의 텍스쳐함수와 가로, 세로 성분값을 사용하였다. 영상 검색을 위해 추출된 영상 특징값을 데이터베이스화하고 용의차량의 전조등 영상을 질의 영상으로 하여 후보 차량에 대한 정보를 검색하도록 하였다.

  • PDF

스테레오 영상의 정합값을 통한 얼굴특징 추출 방법 (Face Feature Extraction Method ThroughStereo Image's Matching Value)

  • 김상명;박장한;남궁재찬
    • 한국멀티미디어학회논문지
    • /
    • 제8권4호
    • /
    • pp.461-472
    • /
    • 2005
  • 본 논문에서는 스테레오 영상의 정합값(matching)을 통한 얼굴 특징추출 알고리즘을 제안한다. 제안된 알고리즘에서는 얼굴색상 정보의 RGB컬러공간을 YCbCr컬러공간으로 변환하여 얼굴영역 검출하였다. 추출된 얼굴영역으로부터 눈 형판(template)을 적용하여 눈 사이의 거리와 기울어짐, 코와 입에 대한 특징의 기하학적인 특징 벡터를 추출하였다. 또한 제안한 방법은 2차원 특징정보 뿐만 아니라 스테레오 영상의 정합을 통한 얼굴의 눈, 코, 입의 특징을 추출할 수 있었다. 실험을 통하여 약 1m이내 거리에서 73%의 일치율을 보였고, 약 1m이후 거리에선 52%의 일치율을 보였다.

  • PDF

Wavelet 변환에 기반한 암세포 조직 영상의 질감 분석 (Texture Analysis of Carcinoma Cell Tissue Image based on Wavelet Transform)

  • 최현주;이병일;이연숙;최홍국
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.305-308
    • /
    • 2000
  • 암의 진행 정도를 판단하기 위한 암세포 조직영상의 분석은 그 대상이 되는 영상의 다양성과 잡음으로 인해 정확한 분석이 어렵다. 특히, 암의 진행 정도를 판단하는데 있어서 중요한 요인인 세포핵의 variation에 따른 order/disorder 정도를 객관적 수치로 정량화하기 위해서는, 각 기(stage)에 따른 암의 진행정도를 가장 잘 나타낼 수 있는 특징값 추출이 필수적이다. 본 논문에서는 가장 유효한 특징값을 추출하기 위하여, 공간 영역과 주파수 영역에서 그 지역적 특징을 잘 나타내는 wavelet 변환을 적용한 후, 분할 된 서브 밴드 중 고대역 서브 밴드에서 질감 특징을 추출하고, 추출 된 질감 특징값들이 암의 진행 정도에 따른 각 집단간에 유의한 차이를 나타내는지에 대한 유의성을 검증하기 위하여, 다변량 통계학적 분석 방법을 사용하여 비교분석 하였다.

  • PDF

3차원 물체 재구성 과정이 통합된 실시간 3차원 특징값 추출 방법 (Real-time 3D Feature Extraction Combined with 3D Reconstruction)

  • 홍광진;이철한;정기철;오경수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.789-799
    • /
    • 2008
  • 상호작용이 가능한 컴퓨팅 환경에서 사람과 컴퓨터 사이의 자연스러운 정보 교환을 위해 동작 인식과 관련한 연구가 활발하게 이루어지고 있다. 기존의 2차원 특징값을 이용하는 인식 알고리즘은 특징값 추출과 인식 속도는 빠르지만, 정확한 인식을 위해서 많은 환경적인 제약이 따른다. 또한 2.5차원 특징값을 이용하는 알고리즘은 2차원 특징값에 비해 높은 인식률을 제공하지만 물체의 회전 변화에 취약하고, 3차원 특징값을 이용하는 인식 알고리즘은 특징값 추출을 위해 3차원 물체를 재구성하는 선행 과정이 필요하기 때문에 인식 속도가 느리다. 본 논문은 3차원 물체 재구성 단계와 특징값 추출 단계를 통합하여 실시간으로 3차원 정보를 가지는 특징값 추출 방법을 제안한다. 제안하는 방법은 기존의 GPU 기반 비주얼 헐 생성 방법의 세부 과정 중에서 동작 인식에 필요한 데이타 생성 부분만을 수행하여 임의의 시점에서 3차원 물체에 대한 3종류의 프로젝션 맵을 생성하고, 각각의 프로젝션 맵에 대한 후-모멘트(Hu-moment)를 계산한다. 실험에서 우리는 기존의 방법들과 단계별 수행 시간을 비교하고, 생성된 후-모멘트에 대한 혼동 행렬(confusion matrix)을 계산함으로써 제안하는 방법이 실시간 동작 인식 환경에 적용될 수 있음을 확인하였다.

Boosted Random Ferns를 이용한 회전 불변 얼굴 검출 (Rotation Invariant Face Detection with Boosted Random Ferns)

  • 김후현;조동찬;배종엽;김회율
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.52-55
    • /
    • 2013
  • 본 논문은 Boosted Random Ferns 기반의 회전 불변 얼굴 검출 방법을 제안한다. 기존 Random Ferns 의 경우 특징값을 추출할 때 임의로 선택한 두 픽셀의 밝기값 비교를 통하여 이진 특징값을 추출한다. 이 경우 해당 픽셀의 밝기값에 잡음이 포함되면 특징값이 부정확하게 추출되는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 임의로 두 블록을 선택하고 해당 블록내 밝기값의 평균을 비교하여 이진 특징값을 추출하였다. 또한 픽셀 위치를 임의로 선택하여 ferns 를 구성하였던 기존의 방법 대신 최고의 분류 성능을 가지는 fern 들을 이용하여 분류기를 구성하기 위해, AdaBoost 의 방법을 Random Ferns 에 맞게 변경하였다. Boosted Random Ferns 를 트리 구조의 cascade 노드에 방향과 각도에 따라 배치하여 연산 속도를 향상시키고 false-positive를 줄이는 효과를 보았다. CMU Rotated Face Database 를 사용하여 평가하였을 때, 기존 Random Ferns 는 false-positive 의 수가 57 개 일 때 66%의 검출률을 보인 반면, Boosted Random Ferns 는 false-positive 의 수가 45 개 일 때 88%의 검출률을 보였다.

  • PDF

특징 지도를 이용한 자동적인 중심 객체 추출 (Automatic Attention Object Extraction Using Feature Maps)

  • 박기태;김종혁;문영식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.370-372
    • /
    • 2006
  • 본 논문에서 제안하는 방법은 영상에서 중심 객체를 추출하기 위해 에지와 색상 정보에서 추출한 특집 지도와 배경의 영향을 줄이기 위친 창조 지도(reference map)를 제안한 것이 특징이다. 특징 지도는 다른 영역과 현저하게 구분되는 영역을 검출하기 위해서 영상의 특징 값(feature)들을 이용해서 구성한 영상이라고 할 수 있다. 그리고 창조 지도는 배경의 영향을 최소화하면서, 객체가 존재할 확률이 높은 부분을 나타내는 지도이다. 제안하는 방법은 밝기 차 정보를 가지고 있는 에지와 YCbCr 컬러모델과 HSV 컬러모델의 색상 성분을 특징 값으로 사용한다. 이들 특징 값을 이용해서 특징 지도를 구성하는 방법으로 영상 내 색상 차에 의해서 나타나는 경계부분을 구하는 방법을 사용한다. 이 방법을 사용하여 에지 지도와 두 개의 색상 지도의 3가지 특징 지도를 생성한다. 다음으로, 영상 배경의 영향을 줄이기 위해 참조 지도를 구한다. 구해진 참조 지도와 특징 지도들을 이용해서 결합 지도(combination map)를 생성한다. 결함 지도로부터 다각형의 객체 후보 영역을 구하고, 객체 후보 영역에 영상분할을 적용하여 중심 객체를 추출한다. 실험에 사용된 영상들은 Corel DB를 사용하였으며, 실험결과로써 precision은 84.3%, recall은 81.3%의 성능을 보인다.

  • PDF