• Title/Summary/Keyword: 특이치 분해

Search Result 86, Processing Time 0.03 seconds

Exploration of an Optimal Two-Dimensional Multi-Core System for Singular Value Decomposition (특이치 분해를 위한 최적의 2차원 멀티코어 시스템 탐색)

  • Park, Yong-Hun;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.21-31
    • /
    • 2014
  • Singular value decomposition (SVD) has been widely used to identify unique features from a data set in various fields. However, a complex matrix calculation of SVD requires tremendous computation time. This paper improves the performance of a representative one-sided block Jacoby algorithm using a two-dimensional (2D) multi-core system. In addition, this paper explores an optimal multi-core system by varying the number of processing elements in the 2D multi-core system with the same 400MHz clock frequency and TSMC 28nm technology for each matrix-based one-sided block Jacoby algorithm ($128{\times}128$, $64{\times}64$, $32{\times}32$, $16{\times}16$). Moreover, this paper demonstrates the potential of the 2D multi-core system for the one-sided block Jacoby algorithm by comparing the performance of the multi-core system with a commercial high-performance graphics processing unit (GPU).

An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byeong-Hui;Jang, U-Seok;Gang, Hwan-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.267-271
    • /
    • 2007
  • 본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.

  • PDF

A Study on Dipole Modeling Method for Ship's Magnetic Anomaly using Singular Value Decomposition Technique (특이치 분해 방법에 의한 함정 자기원 다이폴 모델링 방안 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.259-264
    • /
    • 2007
  • This paper describes the mathematical modeling method for the static magnetic field signature generated by a magnetic scale model. we proposed the equivalent dipole modeling method utilizing a singular value decomposition technique from magnetic field signatures by magnetic sensors are located special depths below the scale model. The proposed dipole modeling method was successfully verified through comparisons with the real measured values in our non-magnetic laboratory. Using the proposed method, it is possible to predict and analyze static magnetic field distributions at any difference depths generated from the real ships as well as a scale model ship.

An invisible watermarking scheme using the SVD (특이치 분해를 이용한 비가시적 워터마크 기법)

  • 유주연;유지상;김동욱;김대경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1118-1122
    • /
    • 2003
  • In this paper, we propose a new invisible digital watermarking scheme based on wavelet transform using singular value decomposition. Embedding process is started by decomposing the lowest frequency band image with 3${\times}$3 block among which we define the watermark block chosen by a key set; entropy and condition number of the block. A watermark is embedded in the singular values of each watermark blocks. This provides a robust watermarking in lowest possible time-frequency domain. To detect the watermark, we are locally modeling an attack as 3${\times}$3 matrices on the watermark blocks. Combining with the SVD and the attack matrices, we estimate watermark set corresponding to the watermark blocks. In each watermark block, we determine an optimal watermark which is justified by the T-testing. A numerical experiment shows that the proposed watermarking scheme efficiently detects the watermarks from several JPEG attacks.

Digital Watermarking based on Wavelet Transform and Singular Value Decomposition(SVD) (웨이블릿 변환과 특이치 분해에 기반한 디지털 워터마킹)

  • 김철기;차의영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.602-609
    • /
    • 2002
  • In this paper, we propose an robust invisible watermarking method using wavelet transform and singular value decomposition for the ownership protection. of images. For this method, after we decompose the original image in three level using wavelet transform, we use singular value decomposition based key depended watermark insertion method in the lowest band $LL_3.$ And we also watermark using DCT for extraction of watermark and verification of robustness. In the experiments, we found that it had a good quality and robustness in attack such as compression, image processing, geometric transformation and noises. Especially, we know that this method have very high extraction ratio against nose and JPEG compression. And Digimarc's method can not extract watermark in 80 percent compression ratio of JPEG, but the proposed method can extract well.

Reverberation Characterization and Suppression by Means of Low Rank Approximation (낮은 계수 근사법을 이용한 표준 잔향음 신호 획득 및 제거 기법)

  • 윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, the Low Rank Approximation (LRA) method to suppress the interference of signals from temporal fluctuations is applied. The reverberation signals and temporally fluctuating signals are separated from the measured data using the Ink. The Singular value decomposition (SVD) method is applied to extract the low rank and the temporally stable reverberation was extracted using the LRA. The reverberation suppression is performed on the LRA residual value obtained by removing the approximate reverberation signals. In overall, the method can be applied to the suppression of reververation in active sonar system as well as to the modeling of reverberation.

Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition (3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정)

  • 송환종;양욱일;손광훈
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.31-40
    • /
    • 2003
  • Most face recognition systems are based on 2D images and applied in many applications. However, it is difficult to recognize a face when the pose varies severely. Therefore, head pose estimation is an inevitable procedure to improve recognition rate when a face is not frontal. In this paper, we propose a novel head pose estimation algorithm for 3D face recognition. Given the 3D range image of an unknown face as an input, we automatically extract facial feature points based on the face curvature. We propose an Error Compensated Singular Value Decomposition (EC-SVD) method based on the extracted facial feature points. We obtain the initial rotation angle based on the SVD method, and perform a refinement procedure to compensate for remained errors. The proposed algorithm is performed by exploiting the extracted facial features in the normaized 3D face space. In addition, we propose a 3D nearest neighbor classifier in order to select face candidates for 3D face recognition. From simulation results, we proved the efficiency and validity of the proposed algorithm.

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.