• 제목/요약/키워드: 트위만-그린 간섭계

검색결과 2건 처리시간 0.014초

Four-bucket 알고리즘을 이용한 레이저 간섭계 (Multiphase Homodyne Laser Interferometer with Four Bucket)

  • 박윤창;정경민
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.203-208
    • /
    • 1999
  • By tilting the reference mirror of Twynman-Green interferometer having a reference mirror and a moving mirror, firinge pattern composed of bright and dark parallel lines can be obtained and the fringe pattern is shifted according to the displacement of the mowing mirror. Several studies are executed for displacement measurement by detecting the intensity of the fringe with photo-diodes having small detecting area. In this study, to improve the sensitivity and robustness, the intensity of fringe is detected by using a large-area quadratic photo-diode masked with a grating panel having four kinds of binary grating having phase-difference of 0, {\pi}$/4, {\pi}$/2, 3 {\pi}$/4. The phase of the fringe is calculated with a simple 4-buckets algorithm. A experimental result shows that standard deviation of 5.653 nm is obtained comparing with a capacitive type gap sensor having nearly 1 nm accuracy.

  • PDF

광위상 간섭을 이용한 이송축의 운동오차 실시간 보상 (Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry)

  • 이형석;김승우
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.