• Title/Summary/Keyword: 트리 길이

Search Result 213, Processing Time 0.017 seconds

Development of the paper bagging machine for grapes (휴대용 포도자동결속기 개발연구)

  • Park, K.H.;Lee, Y.C.;Moon, B.W.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2009
  • The research project was conducted to develop a paper bagging machine for grape. This technology was aimed to highly reduce a labor for paper bagging in grape and bakery. In agriculture labor and farm population has rapidly decreased since 1980 in Korea so there was so limit in labor. In particular there is highly population in women and old age at rural area and thus labor cost is so high. Therefore a labor saving technology in agricultural sector might be needed to be replaced these old age with mechanical and labor saving tool in agriculture. The following was summarized of the research results for development of a paper bagging machine for grape. 1. Development of a new paper bagging machine for grape - This machine was designed by CATIA VI2/AUTO CAD2000 programme. - A paper bagging machine was mechanically binded a paper bag of grape which should be light and small size. This machine would be designed for women and old age with convenience during bagging work at the field site. - This machine was manufactured with total weight of less than 350g. - An overage bagging operation was more than 99% at the actual field process. - A paper bagging machine was designed with cartridge type which would be easily operated between rows and grape branches under field condition. - The type of cartridge pin was designed as a C-ring type with the length of 500mm which was good for bagging both grape and bakery. - In particular this machine was developed to easily operated among vines of the grape trees. 2. Field trials of a paper bagging machine in grape - There was high in grape quality as compared to the untreated control at the application of paper bagging machine. - The efficiency of paper bagging machine was 102% which was alternative tool for the conventional. - The roll pin of paper bagging machine was good with 5.3cm in terms of bagging precision. - There was no in grape quality between the paper bagging machine and the conventional method. - Disease infection and grape break was not in difference both treatments.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

A Brief Empirical Verification Using Multiple Regression Analysis on the Measurement Results of Seaport Efficiency of AHP/DEA-AR (다중회귀분석을 이용한 AHP/DEA-AR 항만효율성 측정결과의 실증적 검증소고)

  • Park, Ro-kyung
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.73-87
    • /
    • 2016
  • The purpose of this study is to investigate the empirical results of Analytic Hierarchy Process/Data Envelopment Analysis-Assurance Region(AHP/DEA-AR) by using multiple regression analysis during the period of 2009-2012 with 5 inputs (number of gantry cranes, number of berth, berth length, terminal yard, and mean depth) and 2 outputs (container TEU, and number of direct calling shipping companies). Assurance Region(AR) is the most important tool to measure the efficiency of seaports, because individual seaports are characterized in terms of inputs and outputs. Traditional AHP and multiple regression analysis techniques have been used for measuring the AR. However, few previous studies exist in the field of seaport efficiency measurement. The main empirical results of this study are as follows. First, the efficiency ranking comparison between the two models (AHP/DEA-AR and multiple regression) using the Wilcoxon signed-rank test and Mann-Whitney signed-rank sum test were matched with the average level of 84.5 % and 96.3% respectively. When data for four years are used, the ratios of the significant probability are decreased to 61.4% and 92.5%. The policy implication of this study is that the policy planners of Korean port should introduce AHP/DEA-AR and multiple regression analysis when they measure the seaport efficiency and consider the port investment for enhancing the efficiency of inputs and outputs. The next study will deal with the subjects introducing the Fuzzy method, non-radial DEA, and the mixed analysis between AHP/DEA-AR and multiple regression analysis.