• 제목/요약/키워드: 트레이스 외삽

검색결과 1건 처리시간 0.018초

가까운 벌림 빠짐 해결을 위한 딥러닝 기반의 트레이스 내삽 및 외삽 기술에 대한 고찰 (A Review of Deep Learning-based Trace Interpolation and Extrapolation Techniques for Reconstructing Missing Near Offset Data)

  • 박지호;설순지;변중무
    • 지구물리와물리탐사
    • /
    • 제26권4호
    • /
    • pp.185-198
    • /
    • 2023
  • 해양 탄성파 탐사 수행 시 송·수신 케이블의 구조적인 거리차에 의해서 필연적으로 발생하는 가까운 벌림(near offset)의 트레이스(trace)빠짐은 뒤따르는 탄성파 자료처리의 결과 및 영상화에 악영향을 끼치게 된다. 특히 가까운 벌림의 자료의 부재는 정확한 탄성파 영상화를 저해하는 다중반사파의 제거에 주요한 인자로 작용하므로 다중반사파의 영향력이 강해지는 천해 및 연안 탐사의 경우 빠짐을 효과적으로 해결해야 한다. 전통적으로 다양한 라돈 변환(Radon transform) 기반의 내삽 방법들이 가까운 벌림 빠짐의 해결책으로 제시되어왔으나 여러 한계점을 보여, 최근 이를 보완하기 위한 딥러닝(deep learning) 기반의 방법들이 제시되고 있다. 이 논문에서는 기존에 제시된 두 가지의 대표적인 딥러닝 기반의 접근법에 대해 면밀히 분석하여 앞으로 가까운 벌림 내삽 연구가 해결해야 하는 문제점들에 대해 깊이 있게 논의한다. 또한 기존의 딥러닝 기반의 트레이스 내삽 기술을 가까운 벌림 상황에 적용할 때 나타나는 한계점을 현장자료 실험을 통해 명확히 분석하여 향후 가까운 벌림 자료 빠짐의 문제는 내삽이 아닌 외삽으로 접근해야 한다는 것을 보여준다.