• Title/Summary/Keyword: 트랜스포머 블록

Search Result 4, Processing Time 0.017 seconds

Transformer and Spatial Pyramid Pooling based YOLO network for Object Detection (객체 검출을 위한 트랜스포머와 공간 피라미드 풀링 기반의 YOLO 네트워크)

  • Kwon, Oh-Jun;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.113-116
    • /
    • 2021
  • 일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.

  • PDF

Deep Learning based Skin Lesion Segmentation Using Transformer Block and Edge Decoder (트랜스포머 블록과 윤곽선 디코더를 활용한 딥러닝 기반의 피부 병변 분할 방법)

  • Kim, Ji Hoon;Park, Kyung Ri;Kim, Hae Moon;Moon, Young Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.533-540
    • /
    • 2022
  • Specialists diagnose skin cancer using a dermatoscopy to detect skin cancer as early as possible, but it is difficult to determine accurate skin lesions because skin lesions have various shapes. Recently, the skin lesion segmentation method using deep learning, which has shown high performance, has a problem in segmenting skin lesions because the boundary between healthy skin and skin lesions is not clear. To solve these issues, the proposed method constructs a transformer block to effectively segment the skin lesion, and constructs an edge decoder for each layer of the network to segment the skin lesion in detail. Experiment results have shown that the proposed method achieves a performance improvement of 0.041 ~ 0.071 for Dic Coefficient and 0.062 ~ 0.112 for Jaccard Index, compared with the previous method.

A Study on Lightweight Transformer Based Super Resolution Model Using Knowledge Distillation (지식 증류 기법을 사용한 트랜스포머 기반 초해상화 모델 경량화 연구)

  • Dong-hyun Kim;Dong-hun Lee;Aro Kim;Vani Priyanka Galia;Sang-hyo Park
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.333-336
    • /
    • 2023
  • Recently, the transformer model used in natural language processing is also applied to the image super resolution field, showing good performance. However, these transformer based models have a disadvantage that they are difficult to use in small mobile devices because they are complex and have many learning parameters and require high hardware resources. Therefore, in this paper, we propose a knowledge distillation technique that can effectively reduce the size of a transformer based super resolution model. As a result of the experiment, it was confirmed that by applying the proposed technique to the student model with reduced number of transformer blocks, performance similar to or higher than that of the teacher model could be obtained.

Multi-View 3D Human Pose Estimation Based on Transformer (트랜스포머 기반의 다중 시점 3차원 인체자세추정)

  • Seoung Wook Choi;Jin Young Lee;Gye Young Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.48-56
    • /
    • 2023
  • The technology of Three-dimensional human posture estimation is used in sports, motion recognition, and special effects of video media. Among various methods for this, multi-view 3D human pose estimation is essential for precise estimation even in complex real-world environments. But Existing models for multi-view 3D human posture estimation have the disadvantage of high order of time complexity as they use 3D feature maps. This paper proposes a method to extend an existing monocular viewpoint multi-frame model based on Transformer with lower time complexity to 3D human posture estimation for multi-viewpoints. To expand to multi-viewpoints our proposed method first generates an 8-dimensional joint coordinate that connects 2-dimensional joint coordinates for 17 joints at 4-vieiwpoints acquired using the 2-dimensional human posture detector, CPN(Cascaded Pyramid Network). This paper then converts them into 17×32 data with patch embedding, and enters the data into a transformer model, finally. Consequently, the MLP(Multi-Layer Perceptron) block that outputs the 3D-human posture simultaneously updates the 3D human posture estimation for 4-viewpoints at every iteration. Compared to Zheng[5]'s method the number of model parameters of the proposed method was 48.9%, MPJPE(Mean Per Joint Position Error) was reduced by 20.6 mm (43.8%) and the average learning time per epoch was more than 20 times faster.

  • PDF