• Title/Summary/Keyword: 트라이볼러지

Search Result 13, Processing Time 0.018 seconds

Tribology Characteristics of Bearing Steel (STB2) with Pattern Shape (Pattern 형상이 적용된 베어링 강(STB2)의 트라이볼러지 특성)

  • Song, S.O.;Jang, T.H.;Bae, M.K.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.130-136
    • /
    • 2021
  • With the development of the industry, bearings that require higher durability and efficiency are required, and various methods to reduce friction and wear of bearings are being studied. In this study, a wear test was conducted for STB2, a bearing steel material, by machining a micro-line pattern on the race surface of the bearing by machining. The pattern pitch of the specimens was processed to 40㎛, 80㎛, and 150㎛, and the coefficient of friction characteristics were investigated for the unpatterned specimen and the specimen with a DLC thin film deposited on the surface. As a result of the wear test, the pattern pitch showed the smallest coefficient of friction at 40㎛, and it was confirmed that the smaller the pattern pitch, the better the tribology characteristics.

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

Tribology of Si3N4 Ceramics Depending on Amount of Added SiO2 Nanocolloid (SiO2 나노 콜로이드 첨가량에 따른 질화규소의 트라이볼러지)

  • Nam, Ki-Woo;Chung, Young-Kyu;Hwang, Seok-Hwan;Kim, Jong-Soon;Moon, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • We analyzed the wear characterization of $Si_3N_4$ ceramics according to the amount of added $SiO_2$ nanocolloid. The test specimen was prepared by hot-press sintering at 35 MPa and 2123 K in an $N_2$ gas atmosphere for 1 h. A wear test was performed with a block-on-ring tester, and the test conditions were as follows: (1) the ring with a diameter of 35 mm had a rotational speed of 50 rpm; (2) the load was 9.8 N; and (3) the temperature was $25^{\circ}C$. The test results show that $Si_3N_4$ ceramics have a friction coefficient of about 1.0 and a wear loss of about 0.02 mm. Of the specimens used this study, the test specimen with 1.3 wt% of added $SiO_2$ nanocolloid has the best wear resistance because it has the lowest friction coefficient and the smallest wear loss. This specimen also has the highest Vickers hardness and bending strength. In this study, the friction coefficient is inversely proportional to the hardness and bending strength.