• Title/Summary/Keyword: 툴링

Search Result 25, Processing Time 0.023 seconds

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

Investigation into Net-Shape Manufacturing of Three-Dimensional Parts by using RP and RT (쾌속 조형과 쾌속 툴링을 이용한 3차원 제품의 정형 가공에 관한 연구)

  • Ahn D. G.;Lee S. H.;Kim K. D.;Yang D. Y.;Park S. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.16-19
    • /
    • 2001
  • Rapid Prototyping (RP) and Rapid Tooling (RT) were introduced to reduce time-to-market and cost by shortening not only the development phase but also the production phase of the manufacturing process. RP generally builds up a prototype layer by layer, rapidly generating a fully three-dimensional free form shape. RT enables the manufacture of production tools. The integration of RP and RT has the potential for rapid net shaping of thee-dimensional parts, which have geometrical complexity. In this study, net shaping techniques for making three-dimensional parts using RP and RT are described and a sample part are shown. A three-dimensional metal part is manufactured by a new RP process, Variable Lamination Manufacturing by using Expandable Polystyrene Foam (VLM-S), and its application to RT for making a clover punch. In addition, we discussed the technology fusion between metal forming md RP/RT.

  • PDF

An Analysis of Static and Dynamic Behavior of the HSK Tooling System According to Bearing Characteristics (베어링특성에 따른 HSK 공구시스템의 정적 및 동적 거동의 유한요소해석)

  • Park, Jin-Hyo;Kim, Jeong-Suk;Ku, Min-Su;Kang, Ik-Soo;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.346-352
    • /
    • 2010
  • Recently, the high-tech industries, such as the aerospace industry, the auto industry, and the electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, static and dynamic behavior of the HSK tooling System is analyzed according to bearing characteristics and lightweight parts. In order that, three different models of the HSK tooling system are modelled by using a 3D modeling/design program. More stable one in the models of HSK tooling system can be selected by using the FEA(Finite Element Analysis).

Investigation into the development of deep drawing tools with small size for electronic parts utilizing the CAE and RP/RT technology (CAE 와 쾌속조형/쾌속툴링을 이용한 전자제품용 소형 금형의 개발에 관한 연구)

  • Ahn D.G.;Lee S.H.;Kim M.S.;Han G.Y.;Kim J.S.;Moon H.S.;Yoon Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.334-337
    • /
    • 2005
  • The objective of this research works is to propose a rapid development methodology of small size deep drawing tools for electronic parts utilizing the technology combination of CAE and RP/RT. The technology is applied to the development of deep drawing tools with a drain shape. The final surface of tools is obtained from the evaluation of the formability using the CAE. In order to manufacture the physical prototype of tools fer try-out terming, several fabrication experiments are carried out for three types of rapid tool manufacturing technology. Through the fabrication experiments, the acceptable rapid manufacturing technologies of deep drawing tools with a small size have been proposed.

  • PDF

Rapid Product Fabrication using Wire Welding with CO2 Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품)

  • Choi, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Park, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • The rapid prototyping and tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days, the direct metal deposition methods are being investigated as new rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using CO2 laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology as output and their microstructure, hardness and tensile strength are examined for the reliability. In addition, its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF