최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.
희박뷰 전산화단층촬영(computed tomography; CT) 영상화 기술은 피폭 방사선량을 감소시킬 수 있을 뿐만 아니라 획득한 투영상의 균일성을 유지하고 잡음을 감소시킬 수 있는 장점이 있다. 하지만 재구성 영상 내 인공물 발생으로 인하여 화질 및 피사체 구조가 왜곡되는 단점이 있다. 본 연구에서는 희박뷰 CT 영상의 인공물 감소를 위해 wavelet 변환과 잔차 학습(residual learning)을 적용한 콘볼루션 신경망(convolutional neural network; CNN) 기반 영상화 모델을 개발하고, 개발한 모델을 통한 희박뷰 CT 영상의 인공물 감소 정도를 정량적으로 분석하였다. CNN은 wavelet 변환 층, 콘볼루션 층 및 역 wavelet 변환 층으로 구성하였으며, 희박뷰 CT 영상과 잔차 영상을 각각 입출력 영상으로 설정하여 영상화 모델 학습을 진행하였다. 영상화 모델 학습을 위해 평균제곱오차(mean squared error; MSE)를 손실함수로, Adam 함수를 최적화 함수로 사용하였다. 학습된 모델을 통해 입력 희박뷰 CT 영상에 대한 예측 잔차 영상을 획득하고, 두 영상간의 감산을 통해 최종 결과 영상을 획득하였다. 또한 최종 결과 영상에 대한 시각적 특성, 최대신호대잡음비(peak signal-to- noise ratio; PSNR) 및 구조적유사성지수(structural similarity; SSIM)를 측정하였다. 연구결과 본 연구에서 개발한 영상화 모델을 통해 희박뷰 CT 영상의 인공물이 효과적으로 제거되며, 공간분해능이 향상되는 결과를 확인하였다. 또한 wavelet 변환과 잔차 학습을 미적용한 영상화 모델에 비해 본 연구에서 개발한 영상화 모델은 결과 영상의 PSNR 및 SSIM을 각각 8.18% 및 19.71% 향상시킬 수 있음을 확인하였다. 따라서 본 연구에서 개발한 영상화 모델을 이용하여 희박뷰 CT 영상의 인공물 제거는 물론 공간분해능 향상 및 정량적 정확도 향상 효과를 획득할 수 있다.
디지털 영상 처리 분야에서 사람의 동작 인식은 다양하게 연구되고 있으며, 최근에는 깊이 영상을 이용한 방법이 매우 유용하게 사용되고 있다. 하지만 깊이 측정 센서의 위치와 각도에 따라 깊이 영상에서의 객체 크기나 형태가 왜곡되므로 사물 및 사람의 인식 과정에서 인식률이 감소하는 경우가 발생한다. 따라서 뛰어난 성능을 보장하기 위해서는 측정 센서에 의한 왜곡 보정은 반드시 고려되어야 할 사항이다. 본 논문에서는 동작 인식 시스템의 인식률을 향상시키기 위한 전처리 알고리즘을 제안한다. 깊이 측정 센서로부터 입력되는 깊이 정보를 실제 공간 (Real World)으로 변환하여 왜곡 보정을 수행한 후 투영 공간 (Projective World)으로 변환한다. 최종적으로 제안된 시스템을 OpenCV와 Window 프로그램을 사용하여 구현하였으며 Kinect를 사용하여 실시간으로 성능을 테스트하였다. 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx Zynq-7000 FPGA Board에 탑재하여 검증하였다.
본 논문은 동적인 균형을 위한 새로운 동작변환 기법을 제시한다. 이는 불균형한 동작을 원래의 동작 특성을 최대한 보존하면서 균형잡힌 동작으로 고쳐주는 새로운 동작 편집 기법으로서, 정적 균형만을 다루었던 기존의 연구와는 달리, 동적인 동작의 균형잡기 문제를 해결한다. 이 알고리즘은 두발 로봇의 균형제어에 널리 쓰이는 개념인 zero moment point (ZMP)의 자취를 구한 후, 이를 분석하는 방법을 통해서 실현되며 구체적으로는 다음과 같은 네단계로 이루어진다. 먼저, 동작 데이타를 스플라인커브로 피팅한다. 그 다음 이 데이타를 사용하여 ZMP 자취를 계산하여, 동작중에 불균형이 되는 부분을 찾는다. 여기서, 불균형은 ZMP 자취가 지지영역 밖으로 벗어나는 구간으로 정의된다. 다음으로 벗어난 ZMP 자취를 지지영역 안으로 투영시켜 새로운 ZMP 자취를 구한다. 마지막으로 구해진 새로운 ZMP 자취에 부합하도록 원래의 동작을 수정한다. 이 과정은 원래의 동작을 최대한 보존할 수 있도록 constrained optimization problem으로 수식화된다. 우리는 실험을 통해 이 알고리즘이 kinematic한 방법으로 편집된 동작에 역학적 사실성을 보장하는 유용한 방법임을 입증한다.
본 논문은 일반적인 영상 감시 비디오의 입력으로부터 영상 내 보행자들의 유동 속도를 측정하는 방법을 제안한다. 제안한 방법은 연속된 프레임 간에 얻어진 움직임 벡터로부터 실세계(real world)에서 보행자들의 이동량의 크기를 예측하고, 이를 통해 영상 내 보행자들의 평균 이동 속도를 측정한다. 제안한 방법에서는 이를 위해 영상 내 화소 단위를 실세계의 물리 단위(미터)로 변환하기 위한 변환 인자를 정의하였다. 또한, 정확한 속도 추정을 위해 카메라 투영 과정에서 잃어버리게 되는 실세계 움직임의 높이 정보를 시뮬레이션 실험을 통해 통계적으로 추정하였다. 제안한 방법은 카메라 매개변수를 속도 추정 과정에서 명시적으로 분리하여 표현하기 때문에 기존의 유동 속도 추정 방법과 달리 영상의 환경 변화에 적응적으로 대응할 수 있는 장점이 있다. 제안한 방법의 검증을 위하여 시뮬레이션 영상과 실제 영상에 대하여 실험이 이루어졌다. 실험 결과 제안한 방법은 시뮬레이션 영상에서 약 0.08m/s의 오차로 속도를 추정할 수 있었으며, 실제 영상에 대해서도 기대할 수 있는 결과를 보여주었다.
6승의 비선형 항을 가지는 두개의 질량으로 구성된 비선형 해밀톤계에 대해서, 비선형 정규모드인 주기운동의 존재성, 분기현상 및 궤도 안정성을 연구하였다. 운동방정식의 직접적분을 통해 4차원 위상공간에서의 운동궤적을 2차원 면으로 투영하는 푸앙카레 사상을 구하였고, 또한 버크 호프-구스타프슨 표준 변환을 통해 구한 운동적분을 이용하여 에너지가 작을때 푸앙카레 사상에 나타나는 불변 곡선들의 해석적인 표현을 유도하였다. 본 논문에서 연구한 진동계는 비선형 계수의 값에 따라 2개 또는 4개의 비선형 정규모드를 가짐이 밝혀졌다. 푸앙카레 사상은, 분기된 모드는 안정하고, 원래의 모드는 안정한 상태에서 불안정한 상태로 변한다는 것을 분명하게 보여주었다.
본 논문은 3차원 공간상에 존재하는 타원형 물체의 위치 및 자세 추정 기법을 다룬다. 영상에 투영된 타원특징을 해석하여 원래의 타원에 대한 3차원 자세정보를 구하는 것은 어려운 문제이다. 본 논문은 타원특징의 3차원 정보를 추출하기 위하여, 두개의 공면점을 도입한 위치 및 자세 추정 알고리즘을 제안한다. 제안된 방법은 모델과 영상좌표계에서 각각 정의되는 타원-공면점에 대한 대응쌍이 주어질 때 두 좌표계에 대한 동차변환행렬의 유일해를 결정한다. 타원-공면점은 폴라리티를 기반으로 원근변환에 불변하는 한 쌍의 삼각특징으로 변환되며, 삼각특징들로부터 평면 호모그래피가 추정된다. 카메라 좌표계에 대한 물체 좌표계의 3차원 위치 및 자세 파라미터들은 호모그래피 분해를 통해 계산된다. 제안된 방법은 3차원 자세 및 위치 추정 오차의 분석과 공면점의 위치에 따른 민감도의 분석을 통해 평가된다.
본 논문에서는 동영상 압축 부호화에 대한 표준안인 MPEG 기반의 압축 비디오 시퀀스로부터 DCT DC 계수를 추출하고, 이들로 구성된 DC 이미지로부터 AHIM (Accumulative Histogram Intersection Measure)을 이용하여 장면 전환 검출을 수행한 후 대표 프레임을 추출하는 방법을 제시한다. 또한, 추출된 대표 프레임을 두 단계를 거쳐 데이터베이스의 색인 정보로 저장한 후, 입력되는 질의 영상에 대해 사용자가 원하는 검색 결과를 제시하는 방법에 대해 제안한다. 즉 전처리 과정으로 추출된 대표 프레임에 대해 영역 분할을 한 후, 첫 번째 단계에서 수평 투영된 결과를 히스토그램 분포 특성으로 변환시켜 데이터베이스의 색인 정보로 저장한다. 두 번째 단계에서는 영상의 모멘트 특성을 거리함수 값으로 변환시킨다. 실험 결과 제안된 방법이 검색에 있어 우수한 성능을 갖추고 또한 상당한 양의 처리 시간과 메모리 공간을 줄일 수 있음을 확인하였다. 향후 제안한 방법은 색상과 같은 다른 색인 정보와 결합할 경우, 보다 나은 영상 색인과 검색 수단을 제공할 것이다.
본 논문에서는 고정시킨 평면거울을 바라보는 단일 카메라에서 얻어진 영상을 이용하여 훈련자 양 하지의 자세를 3차원으로 추정하는 방법을 제안한다. 이를 위해, 카메라 입력영상으로부터 평면거울에 부착된 네 개의 적외선 마커를 탐색하여 단일 카메라의 자세를 추정한다. 추정된 카메라 자세를 통해 거울평면을 기준으로 하는 훈련공간을 정의하고, 압력 센서를 사용하여 공간 내의 훈련자의 양 하지 위치를 측정한다. 양 하지의 마커는 직접적으로, 또는 거울을 통해 카메라 영상으로 투영되고, 정의된 훈련 공간에서 3차원 위치로 변환된다. 변환된 마커들의 3차원 위치관계에 의해 최종적으로 양 하지의 자세를 얻고 연속적인 움직임에 대해 운동 상태를 추정한다.
내용기반 영상검색은 영상 내의 정보인 색상, 질감, 형태 등의 특징 값을 추출하여 검색에 이용한다. 본 논문에서는 $8{\times}8$ 이산여현변환, 즉 $8{\times}8$ DCT(Discrete Cosine Transform) 후 얻어지는 DC, AC계수를 이용하여 필터뱅크(filter-bank)를 생성하고, 이를 영상의 내용기반 검색에 이용하는 검색방법을 제안한다. 제안된 방법은 생성된 DCT 필터뱅크에서 DC성분과 주요한 AC성분인 AC01, AC10, AC11 만을 이용하며, DC성분에 대한 양자화를 수행하여 계산량을 최소화한다. 그리고 양자화된 DC성분에 대한 히스토그램 정보를 기반으로 영상 검색에 필요한 특징 값을 산출한다. AC성분에 대해서는 Otsu 이진화를 통하여 개괄적인 형태정보를 취득한 다음 이에 대한 수평/수직 방향으로의 투영 히스토그램을 계산하여 특징 값을 취득한다. 추출된 AC성분의 특징 값은 DC성분의 특징 값과 함께, 특징벡터 빈(feature vector bins)을 구성하여 검색을 수행한다. 실험은 1000장의 데이터베이스를 이용하여 수행 되었으며, 기존의 색상정보를 이용한 검색방법보다 우수한 성능을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.