• Title/Summary/Keyword: 투사속도

Search Result 68, Processing Time 0.025 seconds

Volume Ray Casting Acceleration Method using Modified Marching Cubes Tables (변형된 마칭큐브 테이블을 이용한 볼륨 광선 투과법 가속화)

  • Lim, Suk-Hyun;Kim, Ju-Hwan;Shin, Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • Several empty-space leaping methods have been proposed for CPU-based volume ray casting. When sample points are located in semi-transparent cells, however, previous leaping methods perform unnecessary resamplings even if the scalar values on those points are confined within transparent range. A semi-transparent cells leaping method for volume ray casting using the Marching Cubes algorithm is proposed to solve this problem in our previous work. When a ray reaches a semi-transparent cell, our method performs in-out test between current sample point and the bounding box enclosing the triangles generated by the Marching Cubes. If the sample point lies on outside of the bounding box, we estimate the point is regarded as transparent. In this case, the ray advances to the next sample point without performing a resampling operation. We can frequently refer the tables for neighboring voxels, however, when we exploit conventional data structures of the Marching Cubes. We propose modified Marching Cubes tables for solving this problem.

Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC (PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계)

  • Bae, Su-Hyeon;Kim, Seon-Ho;Yu, Seon-Guk
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • 3D medical image reconstruction techniques are useful to figure out complex 3D structures from the set of 2D sections. In the paper, 3D medical image reconstruction system is constructed under PC environment and programmed based on modular programming by using Visual C++ 4.2. The whole procedures are composed of data preparation, gradient estimation, classification, shading, transformation and ray-casting & compositing. Three speed optimization techniques are used for accelerating 3D medical image reconstruction technique. One is to reduce the rays when cast rays to reconstruct 3D medical image, another is to reduce the voxels to be calculated and the other is to apply early ray termination. To implement 3D medical image reconstruction system based on PC, speed optimization techniques are experimented and applied.

  • PDF

Individual Variable Step-Size Subband Affine Projection Algorithm (독립 가변 스텝사이즈 부밴드 인접투사 알고리즘)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.443-448
    • /
    • 2022
  • This paper presents a subband affine projection algorithm with variable step size to improve convergence performance in adaptive filtering applications with long adaptive filters and highly correlated input signals. The proposed algorithm can obtain fast convergence speed and small steady-state error by using different step sizes for each adaptive sub-filter in the subband structure to which polyphase decomposition and noble identity are applied. The step size derived to minimize the mean square error of the adaptive filter at each update time shows better convergence performance than the existing algorithm using a variable step size. In order to confirm the convergence performance of the proposed algorithm, which is superior to the existing algorithm, computer simulations are performed for mean square deviation(MSD) for AR(1) and AR(2) colored input signals considering the system identification model.

Artifact Reduction in Digital Radiography Images with the Stationary Grid Based on 1-Dimensional Filters (고정 그리드를 사용한 디지털 방사선 영상에서 1차원 필터에 기초한 왜곡의 제거)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.117-126
    • /
    • 2010
  • In order to obtain more clear x-ray images, an antiscatter grid, which can absorb the scattered rays, is employed. In the high-resolution direct digital radiography, however, the artifacts due to the grid are visible. In this paper, the grid artifacts are reduced by applying simple 1-dimensional low-pass filters in the spatial domain based on the rotated grid. Since the proposed algorithm does not use any detection scheme for the artifact frequencies and discrete Fourier transforms for 2-dimensional filters, it can simply and fast reduce the grid artifacts. The performance using the order 1 average filter is compatible to that of using 2-dimensional filters in the frequency domain.

Prediction of Velocity of Shot Ball with Blade Shapes based on Discrete Element Analysis (이산요소해석에 기초한 블레이드 형상에 따른 숏볼의 투사속도 예측)

  • Kim, Tae-Hyung;Lee, Seung-Ho;Jung, Chan-Gi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.844-851
    • /
    • 2018
  • In this study, the regression equation was suggested to predict of the shot ball velocity according to blade shapes based on discrete element (DE) analysis. First, the flat type blade DE model was used in the analysis, the validity of the DE model was verified by giving that the velocity of the shot ball almost equal to the theoretical one. Next, the DE analyses for curved and combined blade models was accomplished, and their analytical velocities of shot ball were compared with the theoretical one. The velocity of combined blade model was greatest. From this, the regression equation for velocity of shot ball according to the blade shape based on the DE analysis was derived. Additionally, the wind speed measurement experiment was carried out, and the experimental result and analytical one were the same. Ultimately, it was confirmed that the prediction method of the velocity of shot ball based on DE analysis was effective.

Acceleration techniques for GPGPU-based Maximum Intensity Projection (GPGPU 환경에서 최대휘소투영 렌더링의 고속화 방법)

  • Kye, Hee-Won;Kim, Jun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.981-991
    • /
    • 2011
  • MIP(Maximum Intensity Projection) is a volume rendering technique which is essential for the medical imaging system. MIP rendering based on the ray casting method produces high quality images but takes a long time. Our aim is improvement of the rendering speed using GPGPU(General-purpose computing on Graphic Process Unit) technique. In this paper, we present the ray casting algorithm based on CUDA(an acronym for Compute Unified Device Architecture) which is a programming language for GPGPU and we suggest new acceleration methods for CUDA. In detail, we propose the block based space leaping which skips unnecessary regions of volume data for CUDA, the bisection method which is a fast method to find a block edge, and the initial value estimation method which improves the probability of space leaping. Due to the proposed methods, we noticeably improve the rendering speed without image quality degradation.

A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로거동에 관한 연구)

  • Park, Kyoung-Dong;Ha, Kyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Optimal Variable Step Size for Simplified SAP Algorithm with Critical Polyphase Decomposition (임계 다위상 분해기법이 적용된 SAP 알고리즘을 위한 최적 가변 스텝사이즈)

  • Heo, Gyeongyong;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1545-1550
    • /
    • 2021
  • We propose an optimal variable step size adjustment method for the simplified subband affine projection algorithm (Simplified SAP; SSAP) in a subband structure based on a polyphase decomposition technique. The proposed method provides an optimal step size derived to minimize the mean square deviation(MSD) at the time of updating the coefficients of the subband adaptive filter. Application of the proposed optimal step size in the SSAP algorithm using colored input signals ensures fast convergence speed and small steady-state error. The results of computer simulations performed using AR(2) signals and real voices as input signals prove the validity of the proposed optimal step size for the SSAP algorithm. Also, the simulation results show that the proposed algorithm has a faster convergence rate and good steady-state error compared to the existing other adaptive algorithms.

3D Motion Estimation Using Optical Flow (Optical Flow를 이용한 3차원 운동 정보에 관한 연구)

  • 조혜리;이경무;이상욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.845-848
    • /
    • 2000
  • 운동(motion) 벡터는 보고 있는 카메라와 관측되는 대상물 사이의 상대적인 움직임에 의해서 발생되는 3차원 물체의 속도가 2차원 영상에 투사되어 맺히는 영상에서의 2차원 속도 벡터를 가리킨다 영상에서 물체의 움직임은 3차원 공간상의 운동을 알 수 있는 중요한 정보로써 물체를 추적하는데 응용되고 있다. 본 논문에서는 여러 장의 연속적인 2차원 밝기 영상으로부터 카메라의 움직임을 추정하는 문제를 다룬다. 기존의 특징 기반 추적 기법에서는 저 단계의 영상 처리 과정에서 모델과 배경의 특징점이 서로 분리되지 않거나, 모델의 특징(feature)이 소실되었을 경우, 추적이 용이하지 못하고, 카메라와 3차원 물체의 병진과 회전 운동에 의해 발생된 움직임의 경우 3차원 표적 특징이 많이 사라져서 오차가 많이 누적되기도 한다. 본 논문에서는 이러한 문제를 해결하기 위하여 목표물 및 배경 특징들을 사용하여 카메라의 운동 정보를 찾아내는 기법을 제안한다. 제안하는 3차원 카메라의 운동 정보 추정 기법은 크게 두 장의 연속된 영상으로부터 3차원 모델과 배경의 많은 특징들에 대한 광류(optical flow) 검색 과정과, 이로부터 취득한 움직임 벡터와 카메라의 비선형 운동 방정식과 Lagrange multiplier를 통한 카메라의 운동 정보 추정 과정으로 구성된다.

  • PDF

Accelerating GPU-based Volume Ray-casting Using Brick Vertex (브릭 정점을 이용한 GPU 기반 볼륨 광선투사법 가속화)

  • Chae, Su-Pyeong;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, various researches have been proposed to accelerate GPU-based volume ray-casting. However, those researches may cause several problems such as bottleneck of data transmission between CPU and GPU, requirement of additional video memory for hierarchical structure and increase of processing time whenever opacity transfer function changes. In this paper, we propose an efficient GPU-based empty space skipping technique to solve these problems. We store maximum density in a brick of volume dataset on a vertex element. Then we delete vertices regarded as transparent one by opacity transfer function in geometry shader. Remaining vertices are used to generate bounding boxes of non-transparent area that helps the ray to traverse efficiently. Although these vertices are independent on viewing condition they need to be reproduced when opacity transfer function changes. Our technique provides fast generation of opaque vertices for interactive processing since the generation stage of the opaque vertices is running in GPU pipeline. The rendering results of our algorithm are identical to the that of general GPU ray-casting, but the performance can be up to more than 10 times faster.