• Title/Summary/Keyword: 투각섬석 석면

Search Result 17, Processing Time 0.022 seconds

Asbestiform Tremolite Formed by Chert-Dolomite Reaction and Its Morphological Characteristics (처트-백운석 반응에 의한 석면상 투각섬석의 생성과 형태적 특성)

  • Jeong, Gi Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Diagenetic black chert nodules occur in the Paleozoic dolostone in Susan, Jecheon, Korea. They reacted with dolomite to form alteration rim around the nodules during the contact metamorphism probably related to the intrusion of biotite granite. In the earlier stage of alteration, talc and calcite replaced both the chert and dolomite, which were subsequently replaced by tremolite. Significant mass of tremolite occurs along the horizon enriched with chert nodules. Scanning electron microscopy and optical microscopy of the tremolite specimens revealed the elongated morphology of diverse aspect ratios coexisting in several mm scale. Non-asbestiform tremolite columns were also common as well as asbestiform fibrous bundles. Quantitative estimation of asbestos should be more cautious for naturally occurring materials because all the tremolite particles in the outcrop are not asbestiform. The occurrence of asbestiform tremolite in the Susan area indicates that a combination of chert-bearing dolostone, heat source, and aqueous fluids is one of the geological environments for the formation of asbestiform tremolite.

Characteristics of Tremolite Asbestos from Abandoned Asbestos Mines in Boryeong Area, Chungnam (충남 보령지역의 폐석면 광산에서 산출하는 투각섬석 석면의 특성)

  • Yoon, Keun-Taek;Hwang, Jin-Yeon;Oh, Ji-Ho;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • We studied the geological occurrence, associated minerals, mineralogical properties and formation process of tremolites from two abandoned asbestos mines, Jungang (Sinsuk) and Daebosuksan, located in Boryoung area, Chungnam. Morphologically different tremolites such as long fibrous, needle-like, bladed and prismatic forms coexisted. Fibrous tremolite, known for its high toxieity to human health, was systematically analyzed by polarized light microscopy and scanning electron microscopy. The average length of tremolite fibers was 31.2 ${\mu}m$ although the maximum length of some asbestos was 210.0 ${\mu}m$. The average width and aspect ratio were 1.6 ${\mu}m$ and 19.9, respectively. Tremolite showed inclined extinction in the range of 6.1~20.2$^{\cric}$. X-ray diffraction patterns were slightly different between fibrous (asbestiform) and prismatic (non-asbestiform) tremolites. EPMA analysis of tremolites in the study area indicated extremely high Mg content with very low Fe content, close to the composition of tremolite in end-member in the tremolite-actinolite solid solution series. The formational conditions of asbestiform and non-asbestiform tremolite appear to be different. Asbestiform tremolite was estimated to have been formed in later stage.

Occurrence and Mineralogical Characteristics of Asbestos in Dolostone at Ungdo, Seosan (서산 웅도 백운암 내 석면 산출 및 광물학적 특성 규명)

  • Kim, Seon-Ok;Lee, Minhee;Jung, Hyunjung;Shin, Wonji
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.489-496
    • /
    • 2014
  • The occurrence and mineralogical characteristics of asbestos in dolostone at Ungdo, Seosan were investigated by analyses of PLM, XRD, and SEM/EDS. Representative outcrops of dolostone at Ungdo were examined and four dolostone samples were collected according the occurrence type to identify the shape of asbestos in dolostone samples. The host rock of dolostone had been produced from the hydrothermal alteration and/or thermal metamorphism of which main source was assumed as the acidic granite. Tremolites were observed near the cracks or fractures of the dolostone as tamping or gob types. From the mineralogical analyses, main minerals of dolostone were dolomite with calcite, quartz, talc, amphibole, and pyroxene. From SEM/EDS analyses, tremolite-actinolite asbestoses were observed in dolostone and their shapes were prismatic and fibrous (less than $1{\mu}m$ in width). Non-asbestos prismatic forms were also found and they would transfer to asbestos particles resulting from the cleavage and fracture of the prismatic particles. Overall results suggest that asbestoses in Ungdo dolosotnes were mainly tremolite-actinolite and they were originated from the hydrothermal alteration of Ca-Mg rich dolostone.

Genetic Differences of Two Asbestos Mines, Boryoung Area (보령지역 두 석면광산의 성인 차이)

  • Song, Suckhwan;Lim, Hoju;Lee, Wooseok
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.165-178
    • /
    • 2013
  • This study is for the genetic differences of two closed asbestos mines from Jeongjeon and Ocheon areas in Boryoung, Chungnam. They are mined asbestos for past several decades. Host rocks are serpentinites for Jeongjeon mine and dolomites for Ocheon mine. Asbestos samples and their host rocks are collected from the field trips and examined with microscopes and FESEM, and analysed with XRD and EDX to confirm for the type and/or compositions of the minerals. The asbestos occur as layers, cracks and fractures assummed as a pathway of the hydrothermal water, but show different characteristics. The serpentinites from the Jeongjeon mine contain chrysotile, tremolite and actinolite asbestos. Non-asbestos minerals including tremolite and actinolite were also found. The chrysotiles occur as a cross fiber or slip fiber at veins and along cracks of several mm to cm thickness. Tremolite and actinolite asbestos occur along cracks and fractures of several cm to ten cm thickness. It suggests that the asbestos from Jeongjeon area were formed by the reactions between serpentinite and hydrothermal water. The dolomites of the Ocheon mine only contain tremolite and actinolite asbestos. The asbestos occur along layers, cracks and fractures, suggestive of asbestos from Ocheon area formed by the reactions between dolomite and hydrothermal waters influxed along layers, cracks and fractures. Overall results suggest that two asbestos mines showing different host rocks are located in a Boryoung area. They show a different type of asbestos minerals, reflecting variety of petrogeneses.

Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos (투각섬석-양기석 계열 각섬석의 형태적 다양성과 자연 석면 평가에서의 의미)

  • Jeong, Gi-Young;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Electron microscopy of the tremolite-actinolite series amphiboles from the naturally occurring asbestos locality showed the morphological diversity including fibrous, acicular, and prismatic. Very thin, long, and flexible fibers of constant width form ropy bundles or mats. Acicular particles are slightly thick, long, elastic, and easily separated from the bundle of parallel rods. Acicular fragments of lower aspect ratio are formed during the crushing of the amphibole prism. Morphological features of the amphiboles are different depending on their localities and vary in a specimen. Morphological continuum between amphibole fiber and prism requires the establishment of reliable identification criterions and sample preparation protocol based on the relation between carcinogenicity and morphological features.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

Occurrences of Sepiolites within a Seosan Group, Western Part of Chungnam (충남 서부 서산층군 내 해포석의 산출)

  • Song, Suckhwan;Lim, Koju;Lee, Wooseok
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study examines the mineralogy of sepiolites occurred within the carbonaceous rocks of Songak schist and Pyeongtaek migmatitic gneiss of Precambrian Seosan group, in the western part of Chungnam. Host rocks of the sepiolite were dolomitic rocks and have experienced hydrothermal alteration and metamorphism. Mesozoic granite is assumed as a main source of hydrothermal alteration for the dolomitic rocks. Some of the tremolite asbestos coexist with the sepiolites. Representative sepiolite and tremolite samples were collected from the layers cracks or fractures of the dolomitic rocks and/or examined with microscope with microscope, XRD, SEM and TEM. Sepiolites are mainly recognized along the cracks assumed as pathways of hydrothermal solution. Tremolites are mainly found at layers or cracks of the dolomitic rocks and occur as asbestos as well as non-asbestos forms. It was confirmed that some of the tremolite asbestos were coexisted with the sepiolites. Overall results suggest that the occurrences of sepiolites within the dolomitic rocks mainly result in the hydrothermal alteration and the fluid from the acidic rocks, possibly granites. It also suggests that coexisting tremolite asbestos were formed by similar geological environment.

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 토양 내 석면의 광물학적 특성)

  • Kim, Jaepil;Jung, Haemin;Song, Suckwhan;Lim, HoJu;Lee, WooSeok;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.479-488
    • /
    • 2014
  • Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.

Changes of Mineralogical Characteristics of Asbestos by Heat Treatment (열처리에 따른 석면의 광물학적 특성변화)

  • Jeong, Hyeonyi;Moon, Wonjin;Yoon, Sungjun;Kim, Yumi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.507-515
    • /
    • 2014
  • Asbestos is designated as carcinogen minerals. Detoxification of asbestos is being conducted by physical and chemical treatments that lead the formation of non-fibrous mineral particles or phase transitions. Major researches have been performed on mineralogical properties of asbestos and possibilities of detoxification in Korea. More specific studies are needed to prove the form and crystal structure changes during the detoxification of asbestos via heat treatment. Therefore, we studied thermal effects on mineralogical characteristics of chrysotile and asbestiform tremolite using electron microscopy investigation. Electron microscopy investigation showed chrysotile fibers were fully transformed into rod-shaped forsterite at $850^{\circ}C$ in 2 hours, and asbestiform tremolite fibers were converted into non-fibrous diopside at $1050^{\circ}C$ in 2 hours. Fibrous asbestos were converted into rod-shaped minerals, which are non-asbestiform. However, compositions of both minerals were not changed before and after heat treatment. These results indicate that thermal treatment of asbestos completely broke down asbestos structure due to dehydroxylation and recrystallization. Thus, electron microscopy investigation can provide the useful information of shapes, crystal structure, and chemistries of the asbestos for the detoxification.