• Title/Summary/Keyword: 퇴적환경의 변화

Search Result 842, Processing Time 0.023 seconds

Study on Resource Plants of the Mt. Geonji, Jeonju City (전주시 건지산 일대의 자원식물상 연구)

  • Oh, Hyun-Kyung;Beon, Mu-Sup;Lim, Seong-Gu;Park, Joon-Moh;Kim, Kae-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • The resource plants of the Mt. Geonji was listed 354 taxa; 92 families, 242 genera, 303 species, 48 varieties and 3 forms. 354 taxa listed consists of 205 taxa of edible plants(57.1%),234 taxa of medicinal plants(65.2%), 167 taxa of ornamental plants(46.5%) and 218 taxa of the others(60.7%). Specific plant species by floral region were total 22 taxa; Trapella sinensis var. antennifera in class IV, Iris ensata var. spontanea in Class II, 16 taxa(Salix glandulosa, Alnus hirsuta, Chrysosplenium flagelliferum, Mallotus japonicus, Ilex macropoda, Grewia biloba var. parviflora, Vaccinium oldhami, Lysimachia barystachys, Fraxinus mandshurica, etc.) in class I. The naturalized plants in this site were 12 families, 23 genera, 28 species, 2 varieties, 30 taxa(Bromus unioloides, Phytolacca americana, Oenothera erythrosepala, Ipomoea hederacea var. hederacea, Aster pilosus, Erechtites hieracifolia) and naturalization rate was 8.5% of all 354 taxa vascular plants. Wild plants disturbing ecosystem like Solanum carolinense and Ambrosia artemisiifolia var. elatior have been increasing. So, it needs continuing control and conservation measures on the plant ecosystem.

Sedimentary Characteristics and Evolution History of Chenier, Gomso-Bay tidal Flat, Western Coast of Korea (황해 곰소만 조간대에 발달한 Chenier의 퇴적학적 특성과 진화)

  • 장진호;전승수
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.212-228
    • /
    • 1993
  • A chenier, about 860 m long, 30 to 60 m wide and 0.6∼1.6 m high, occurs on the upper muddy tidal flat in the Gomso bay, western coast of Korea, It consists of medium to fine sands and shells with small amounts of subangular gravels. Vertical sections across the chenier show gently landward dipping stratifications which include small-scale cross-bedded sets. the most probable source of the chenier is considered to be the intertidal sandy sediments. Vibracores taken along a line transversing the tidal flat reveal that the intertidal sand deposits are more than 5 m thick near the low-water line and become thinner toward the chenier. The most sand deposits are undertrain by tidal muds which occur behind the chenier as salt marsh deposits. C-14 age dating suggests that the sand deposits and the chenier are younger than about 1,800 years B.P. The chenier has originated from the intertidal sand shoals at the lower to mid sand flat, and has continuously moved landward. A series of aerial photographs (1967∼1989) reveal that intertidal sand shoals (predecessor of the western part of chenier) on the mid flat have continuously moved landward during the past two decades and ultimately attached to the eastern part of the chenier already anchored at the present position in the late 1960s. Repeated measurements (four times between 1991 and 1992) of morphological changes of the chenier indicate that the eastern two thirds of the chenier, mostly above the mean high water, has rarely moved whereas the western remainder below the mean high water, has moved continuously at a rate of 0.5 m/mo during the last two years (1991∼1992). This displacement rate has been considerably accelerated up to 1.0 m/mo in winter, and during a few days of typhoon in the summer of 1992 the displacement amounted to about 8∼11 m/mo for the entire chenier. these facts suggest that macro-tidal currents, coupled with winter-storm waves and infrequent strong typhoons, should play a major role for the formation and migration of chenier after 1,800 B.P., when the sea level already rose to the present position and thereafter remained constant.

  • PDF