• Title/Summary/Keyword: 퇴적환경의 변화

Search Result 847, Processing Time 0.026 seconds

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Characteristics of Sedimentary Environments in Gamak Bay based on Numerical Experiments (수치실험에 기초한 가막만의 퇴적 환경 특성)

  • Kim, Byeong Kuk;Park, Sung Jin;Lee, Moon Ock;Lee, Yeon Gyu;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • We carried out numerical experiments to understand sedimentary environments in Gamak Bay where is located in the center of the southern coast of Korea. Deposition rates in Gamak Bay appeared to increase in the autumn and spring whereas they appeared to decrease in the summer and winter. These seasonal variations qualitatively coincided with seasonal variations of Ignition Loss (IL) for surface sediments. Furthermore, deposition rates turned out to be prevalent compared to erosion rates in most areas of the bay. On the other hand, current measurement results at both the northeast and south mouths of the bay showed their residual components to flow into the bay. Therefore, we can conclude that contaminated materials flowing into Gamak Bay will precipitate to be deposited in the bay as long as there is no specific events such as dredging.

Late Quaternary Stratigraphy and Depositional Environment of the Yeongsan River Estuary, Southwestern Korea (영산강 하구의 제4기 후기 층서 및 고환경)

  • 남욱현;김주용;양동윤;홍세선;봉필윤;이윤수;유강민;염종권
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.545-556
    • /
    • 2003
  • Detailed interdisciplinary investigations demonstrate that the Yeongsan River estuarine-filled sediments clearly record important paleoenvironmental changes during the Last Glacial and Holocene. The sediments from 18.9 m(20.5∼l.6m in depth) long core MW-1 are differentiated by changes in sedimentary textures and palynomorph assemblages. Chronology was provided by AMS$^{14}$C dating and regional pollen correlation. Three paleoenvironrnental phases are recognized: (1) The Last Glacial deposits consist mainly of fluvial sediments and paleosols, experienced deposition alternating with pedogenesis. The appearance of the paleosols suggests that the paleoclimate might be cold and humid. (2) The early and middle Holocene phase started abruptly in response to the rapid global climatic warming. and is characterized by abundant marine palynomorphs. (3) The late Holocene is marked by more cool conditions. The paleoenvironmental changes recorded in the sediments coincide not only with local but also with broad-scale, probably global climate changes.

Late Quaternary Stratigraphy and the Heavy Minerals from Deep Cored Sediments along the Coastal Deposits, Songji Lagoon, Eastern Coast, Korea (강원도 동해안(송지호) 해안퇴적층의 제4기 후기 층서와 중광물)

  • 박용안;박영후
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • The deep cored sediments of the beach spit deposit in the inlet of the Songji lagoon(lake) have been studied in terms of the late Quarternary stratigraphy and relationship of the Holocene sea-level curve. Furthermore, the total content of heavy mineral sands from the established stratigraphic units(Unit I, II and III) varies due to the changes of depositional environments from continental to marine condition.

  • PDF

Correlation between Sandbar Development and Environmental Factors in the Nakdong River Estuary (낙동강 부정형적 사주발달과 환경인자간의 상관성 비교 연구)

  • Lee, I.C.;Yoo, C.I.;Yoon, H.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • This study was performed to provide fundamental data for long-term geomorphic predictions of estuarine sandbars in the Nakdong River. We monitored the geomorphic changes of Jinudo (Jinu Island), which is located on the far-southern side of the first western sandbar. We evaluated the temporal and spatial dynamics of the sandbar and the relationship between erosion and deposit speed with environmental factors. We found that: 1) The south side of Jinudo showed very rapid water channel closing and shoal generation. This phenomenon was more obvious during autumn (September and October) than during spring, with greater water depth reduction and variation between sides. 2) The mean deposit speed for Jinudo was approximately 0.85 mm/day. The deposit speed was 1.32 and 1.26 mm/day for the east and south sides of Jinudo, respectively. The maximum deposit and erosion speeds were 27 mm/day and 26 mm/day in July and December, respectively, on the east side of the island. 3) Mean surface deposit size was 0.18-0.26 mm. The newly deposited sandbar had a rotatively larger deposit size than the original land. 4) Correlation analysis showed that, on the southern side of the island, deposit activity prevailed in the winter due to low precipitation and a northerly wind, while erosion was dominant in the summer due to high water flow and a southerly wind. In contrast, the correlation analysis for the eastern side of the island showed that deposition is dominant when water flow is high. These results indicate that geomorphic dynamics vary among island sides.

  • PDF

Long-term Changes of Sediment and Topography at the Southern Kanghwa Tidal Flat, West Coast of Korea (한국 서해안 강화 남부 갯벌 퇴적물 및 지형의 장기적인 변화)

  • Woo, Han Jun
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.493-500
    • /
    • 2013
  • Comparisons of surface sediment distributions in summer 1997 and 2011 and elevations on the tidal flats in April 1998 and March 2013 had been used for understanding the long-term changes of sedimentary environments at southern Kanghwa tidal flat, west coast of Korea. The mud sediments dominated in the eastern part and sandy mud sediments dominated in the western part of the tidal flat in 1997. In 2011, the surface sediments were dominant mud and sandy mud at Sunduri and Tonggum in the eastern part, sandy mud at Tongmakri in the middle part, and sand and muddy sand at Yeochari and Changhwari tidal flats in the western part. The area of mud sediments had decreased, but that of sand-mud mixed sediments extended to eastward tidal flat for 14 years. The long-term topographic changes showed that deposition occurred at Tongmakri and Yeochari and erosion occurred at Changhwari tidal flat during 15 years. These changes should be effected the local hydrodynamic changes by several constructions near the tidal flat since the 1990s.

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Fluvial Deposits Distributed along the Seomjin River (섬진강 유역의 하성 퇴적층에 관한 연구)

  • You, Hoen-Su;Cho, Seok-Hee;Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.174-187
    • /
    • 2000
  • The Quaternary coarse-grained sandy sediments are distributed along the channels of Seomjin River. The fluvial sediments were sedimentologically studied in horizontal and vertical distributions. To analyze depositional environments and facies changes in the sediments, sediment sampling from river mouth to upper stream and desctriptive approaches to the sediment profiles outcropped near Kurye were carried out. The sediments along the stream lines of the river are assigned to very coarse to coarse sand in grain size. The sediment grains are widely scattered in sorting and moderately sorted in average. For skewness and kurtosis, the sediments ranges from very fine to very coarse skewed and from very lepto-kurtic to extremelyl epto-kurtic states, respectively. The sediments are divided into slightly gravelly sand, gravelly sand and sandy gravel in sediment type. The pain shape in the sandy sediments are dominant in equant and tabular forms showing wide varieties. The sandy sediments are mostly poorly sorted and are highly variable in surface texture with SEM. Some smaller grains in the sediments ordinarily show polished surfaces. Of those grains, quartz ones are commonly angular to surounded. On the basis of facies changes and sedimentary structures, outcropped fluvial sediment profiles in Kurye are classified into xGyS, mGyS, gGyS, xSM, xS, mS, mGyM, IgM in facies. These eight facies are reformed as facies assemblage I and ll. The facies assemblage I and II are interpreted as the products of the channel deposits in braided stream and flood plain ones besides channels, respectively. The change facies assemblage I with facies assemblage ll imply that depositional environments hadbeen migrated from braied sream to flood plain ones.

  • PDF