• Title/Summary/Keyword: 퇴적저면

Search Result 30, Processing Time 0.024 seconds

The Status of Research for Economic Ship Routing System (경제운항 알고리즘 개발을 위한 현황 분석)

  • Kang, Nam-seon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.155-156
    • /
    • 2015
  • 최근 선박의 연료유 절감 및 경제운항에 대한 관심이 높아지면서 조선소를 중심으로 운항정보의 활용과 관련된 다수의 프로젝트가 진행되고 있으며 선박 설계, 기상예보 등을 통합한 다양한 시스템이 개발되는 등 선박의 최적운항지원 솔루션 시장이 빠르게 성장하고 있다. 하지만 현재 시장을 주도하고 있는 솔루션들은 설계정보를 중심으로 개발되어 선박을 운영하는 해운선사에서 요구하고 있는 성능기준을 만족하지 못하는 단점이 있다. 따라서 본 연구에서는 운영단계에서 축적되는 운항데이터와 해운선사의 경험과 노하우에 대한 정보가 반영된 경제운항 알고리즘을 개발하기 위한 현황 분석을 수행하였다.

  • PDF

웹 환경에서 가상현실 콘텐츠 제작을 위한 편집 도구 개발 연구

  • Hyun-been Kim;Jun-sung Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.293-295
    • /
    • 2022
  • 기존 가상현실(Virtual reality) 콘텐츠는 제작인 완료된 상태로 제공되기 때문에 법 개정 및 교육 커리큘럼 변화에 능동적으로 대응하지 못한다. 따라서 VR 콘텐츠 제작시 편집이 가능한 툴과 편집된 VR 콘텐츠가 바로 실행되는 편집 도구를 구현한다면 훈련 내역의 변경이 지속적으로 발생되는 VR 콘텐츠에 대안책이 될 것이다. 따라서 이를 해결하기 위해 VR 콘텐츠의 주요 생성 및 생성된 시나리오의 세부 씬(Scene) 구성을 사용자가 직접 생성하는 편집 도구를 구현하고 VR 장치가 없는 운용 환경에서도 실행이 가능 하도록 Web 기반의 편집 도구를 개발하여 VR 콘텐츠의 편집 및 실행 시 동시처리가 가능하도록 편집 도구를 개발하였다.

  • PDF

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures against Beach Erosion II - Centering on the Development of Physics-Based Morphology Model for the Estimation of an Erosion Rate of Nourished Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 II - 양빈 된 해빈 침식률 산정을 위한 물리기반 해빈 지형모형 개발을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-333
    • /
    • 2019
  • In this study, a physics-based 3D morphology model for the estimation of an erosion rate of nourished beach is newly proposed. As a hydrodynamic module, IHFOAM toolbox having its roots on the OpenFoam is used. On the other hand, the morphology model comprised a transport equation for suspended sediment, and Exner type equation derived from the viewpoint of sediment budget with the bed load being taken to accounted. In doing so, the incipient motion of sediment is determined based on the Shields Diagram, while the bottom suspended sediment concentration, the bed load transport rate is figured out using the bottom shearing stress directly calculated from the numerically simulated flow field rather than the conventional quadratic law and frictional coefficient. In order to verify the proposed morphology model, we numerically simulate the nonlinear shoaling, breaking over the uniform beach of 1/m slope, and its ensuing morphology change. Numerical results show that the partially skewed, and asymmetric bottom shearing stresses can be successfully simulated. It was shown that sediments suspended and eroded at the foreshore by wave breaking are gradually drifted toward a shore and accumulated in the process of up-rush, which eventually leads to the formation of swash bar. It is also worth mentioning that the breaker bar formed by the sediments dragged by the back-wash flow which commences at the pinnacle of up-rush as the back-wash flow gets weakened due to the increased depth was successfully duplicated in the numerical simulation.

Water Quality Modeling for Environmental Management in Chinhae.Masan Bay (진해.마산만의 환경관리를 위한 수질모델링)

  • 조흥연;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • The horizontal two-dimensional model which can predict the long-term water quality(WQ) change is setup for the environmental management. For the model calibration and verification, we measured the pollutants load at 22 streams and the WQ at 16 stations monthly and/or seasonally in Chinhae . Masan Bay. The pollutants release rate from the sediment was also measured to consider the regionally different sediment pollution level. From the model application results, it is shown that the WQ concentrations in most of the regions adjacent to land and river inflow are considerably high, but rapidly decrease along the seaward direction. In Masan Bay, the particulate inflow-pollutants were substantially deposited and gradually contaminated the bottom sediment on account of the excessive pollutants load and flow stagnancy. Eutrophication in the effluent discharge region was also being slowly progressed by the inefficiently treated wastewater containing amount of Nand P constituents.

  • PDF

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam] (방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.168-178
    • /
    • 2021
  • Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen's study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.

Development and Field Application of an Amphibious Scrubbing/Suction Dredging Machine with Cylindrical Rotating Brush and Turbidity Barrier (회전브러쉬와 혼탁방지막을 활용한 수륙양용형 Scrub/흡입 준설장치의 개발과 현장적용)

  • Joo, Jin Chul;Kim, Wontae;Kim, Hyunseung;Kim, Hyunseol;Song, Ho Myun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.495-504
    • /
    • 2017
  • An amphibious scrubbing/suction dredging machine with cylindrical rotating brush, housing, and turbidity barrier was newly-developed to remove both sediments with about 10 cm thickness and periphyton attached on various structures in urban water-circulating systems through the scrubbing, suction, and dredging processes. Based on the field application and long-term monitoring, the increase in both suspended solids (SS) and turbidity of water during the scrubbing, suction, and dredging processes was negligible (p>0.05). In some cases, the turbidity of water initially increased, however, the turbidity was stabilized within 20 minutes from the start of dredging processes. The concentration changes in TN and TP of water were not statistically different (p>0.05) before and after the scrubbing, suction, and dredging processes, indicating that benthic nutrients released from sediments were not significantly diffused, and were not supposed to cause significant water pollution. Also, water treatment facilities along with an amphibious scrubbing/suction dredging machine could be more effective since the removal of contaminant loadings through the scrubbing, suction, and dredging processes was much greater than that through simple coagulation/precipitation processes. Finally, GPS-based realtime tracking and operation program have been developed and applied in various urban water-circulating systems, and development of driver cooperative autonomous driving system is in progress to eliminate the need for manual driving of an amphibious scrubbing/suction dredging machine.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

Case study on the lake-land combined seismic survey for underground LPG storage construction (LPG 지하저장기지 건설을 위한 수륙혼합 탄성파탐사 사례)

  • Cha Seong-Soo;Park Keun-Pil;Lee Ho-Young;Lee Hee-Il;Kim Ho-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.101-125
    • /
    • 2002
  • A lake seismic survey was carried out to investigate possible geohazards for construction of the underground LPG storage at Namyang Lake. The proposed survey site has a land-lake combined geography and furthermore water depth of the lake is shallow. Therefore, various seismic methods such as marine single channel high resolution seismic reflection survey, sonobuoy refraction survey, land refraction survey and land-lake combined refraction survey were applied. Total survey amounts are 34 line-km of high resolution lake seismic survey, 14 lines of sonobuoy refraction survey, 890 m of land refraction survey and 8 lines of land-lake combined refraction survey. During the reflection survey, there were severe water reverberations from the lake bottom obscured subsurface profiling. These strong multiple events appeared in most of the survey area except the northern and southern area near the embankment where seems to be accumulated mainly mud dominated depositions. The sonobuoy refraction profiles also showed the same Phenomena as those of reflection survey. Meanwhile the results of the land-lake combined refraction survey showed relatively better qualities. However, the land refraction survey did not so due to low velocity soil layer and electrical noise. Summarized results from the lake seismic survey are that acoustic basement with relatively flat pattern appeared 30m below water level and showed three types of bedrock such as fresh, moderately weathered and weathered type. According to the results of the combined refraction survey, a velocity distribution pattern of the lake bottom shows three types of seismic velocity zone such as >4.5 km/s, 4.5-4.0km/s and <4.0km/s. The major fault lineament in the area showed NW-SE trend which was different from the Landsat image interpretation. A drilling was confirmed estimated faults by seismic survey.

  • PDF