• Title/Summary/Keyword: 퇴적물 용출수

Search Result 102, Processing Time 0.02 seconds

Application of Red Mud and Oyster Shell for the Stabilization of Heavy Metals (Pb, Zn and Cu) in Marine Contaminated Sediment (적니와 굴패각을 이용한 해양오염퇴적물 내 중금속(Pb, Zn and Cu) 안정화 처리)

  • Shin, Woo-Seok;Kang, Ku;Park, Seong-Jik;Um, Byung-Hwan;Kim, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.751-756
    • /
    • 2012
  • In this study, a heavy-metal stabilization treatment using stabilizing agents derived from waste resources was utilized on Incheon North Port range sediment contaminated with Pb, Zn, and Cu. Both calcined red mud (5%, 10%, and 15% w/w) and oyster shell (5%, 10%, and 15% w/w) were applied for a wet-curing duration of 15 days. From the sequential extraction results, the oxide and organic fraction of heavy metals (Pb, Zn, and Cu) were observed strongly in the contaminated sediment. However, the fraction of heavy metal in the stabilized sediment was higher than the organic and residual fraction, in comparison to the contaminated sediment. Moreover, the leaching of heavy metals was reduced in the stabilized sediment, compared with the contaminated sediment. From these results, red mud and oyster shell were shown to be potential stabilizers of heavy metals in contaminated sediment.

Eutrophication Characteristics in the Shellfish Farms, the Southern Coastal Sea of Korea (남해연안 패류양식장의 부영양화 특성)

  • Lee Chan-Won;Kwon Young-Tack;Boo Min-Ho;Kwon Hyok-Bo;Yang Ki-Sup
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.24-33
    • /
    • 2000
  • The value of beauty and the resources in the southern coastal sea is most important not only ecologically but also economically in Korea. Since 1980s, intensive use and consequent coastal water pollution have caused an increase in the frequency of red tides outbreak in this area. In this study, seawater and sediment were collected in summer and winter of 1998 and 1999, respectively. The status of seawater eutrophication, sediment oxygen demand(SOD), and nutrients release from sediment were measured. There was an obvious trend that COD and total phosphorous concentrations of summer sediments obtained from aquaculture farms were higher than those of winter sediments. It was concluded that sediments accumulated in the shellfish farms of southern coastal sea caused oxygen deficit in the bottom layer of seawater and played an important role for eutrophication.

  • PDF

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.

Preferential Decomposition of Nitrogen during Early Diagenesis of Sedimentary Organic Matter (퇴적물 내 유기물의 초기 속성 작용에 나타난 유기 질소의 선택적 분해)

  • Han, Myung-Woo;Lee, Khang-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • Changes in concentrations of dissolved oxygen, ammonia, nitrate, pH, Fe and Mn were monitored from the laboratory incubation of an benthic chamber. The extent of sedimentary organic carbon and nitrogen decomposition was quantified by applying the concentration data to the chemical reaction equations of early diagenesis. The patterns of the concentration changes, observed during the 237 hr long incubation experiment, made it possible to divide the entire experiment period into four characteristic sub-periods (0-9 hr, 9-45 hr, 45-141hr, 141-237 hr). C/N ratio, estimated for each sub-period, was 6.63, 1.49, 0.81 and 0.02, respectively. This sequential decrease in C/N ratio suggests that during the incubation experiment dissolved nitrogen species diffuse more out of the sediment than dissolved carbon species. Greater diffusion of nitrogen indicates the preferential decomposition of organic nitrogen during early diagenesis of sedimentary organic matter. Comparison of the concentration data (sedimentary organic carbon and nitrogen, porewater organic carbon and ammonia)between the sediment pre and post incubation also indicates the preferential decomposition of nitrogen during early diagenesis of sedimentary organic matter.

  • PDF

Processes and Fluxes of Uranium Removal Across the Sediment-Water Interface: A Biogeochemical Approach (해수-퇴적물 경계면을 지나는 우라늄 제거 과정과 플럭스 연구: 생지화학적 접근)

  • Kim, Kee-Hyun;Cho, Jin-Hyung;Lee, Jae-Seong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.188-197
    • /
    • 1999
  • In order to estimate the uranium flux from seawater to sediments, we took pore water samples and deployed benthic chambers on seafloor of Chonsu Bay, Korea. The uranium flux across the sediment-water interface was estimated from the pore water to be 0.112-0.566 mg/$m^2yr$, corresponding to a removal flux of $4.3-21.5{\times}10^7$ gU/yr for the entire Yellow Sea. Nutrient fluxes from sediment to bottom water were estimated to be 135.6 mmol/$m^2yr$ for ammonia, 228.2 mmol/$m^2yr$ for nitrate, 36.8 mmol/$m^2yr$ for phosphate and 23.9 mmol/$m^2yr$ for silicate. The redox boundary, based on the distribution of pore water nitrate and solid phase manganese, was located at 3-5 cm below the sediment surface. Phosphate flux obtained by benthic chambers was 28.S mmol/$m^2yr$. On the other hand, estimates of uranium and silicate fluxes were orders of magnitude greater than those based on pore water profiles. Flux estimates on the basis of pore water concentration is believed to have greater reliability than those obtained from benthic chamber data.

  • PDF

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Hwang, In-Seo;Lee, Mi-Kyung;Kang, Ho;Kim, Eun-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.755-764
    • /
    • 2009
  • To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.

Geochemical Properties of Sedimentary Phosphorus of Daechung Lake in Autumn, Korea (추계 대청호 퇴적물 내 인의 지화학적 특성)

  • Shim, Moo Joon;Yang, Yun Mo;Oh, Da Yeon;Hwang, Yun Ho;Lee, Soo Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.168-175
    • /
    • 2015
  • This study was conducted in autumn to determine phosphorus (P) fraction in sediments of Daechung Lake, to elucidate controlling factors for sedimentary P, and to compare with the other areas. For this study, sediment samples were collected at 6 sites only once on November 2014 using ponar grab and analyzed for solid-phase P (Loosely adsorbed, Fe-bound, Al-bound, detrital apatite, and refractory organic P) by sequential extraction. Total phosphorus (TP) was relatively high in front of Daechung Dam and Hoinam where fish farm was run until 1997. The dominant sedimentary P form was Al-bound P, followed by Fe-bound P, which could be released from sediment to water column during suboxic state. Based on principal component analysis, Al-bound P, Fe-bound, and TP were controlled by grain size of sediments. Loosely adsorbed, detrital apatite, and refractory organic P were relatively highly accumulated at the mouth of major tributaries where suspended sediments were delivered. Sedimentary P concentrations in Daechung Lake sediments were not higher than in other lake sediments. Therefore, based on these results, major controlling factors were grain size and input of suspended sediments from tributaries.

Seasonal Variations of Sediment Oxygen Demand and Denitrification in Kanghwa Tidal Flat Sediments (강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화)

  • An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Seasonal variations of remineralization and inorganic nitrogen removal capacity were measured from Dec. 2001 to Apr. 2004 in a tidal flat located in south-western pan of Gwanghwa island, Korea by measuring the sediment oxygen demand (SOD) and denitrification. SOD was higher in muddy sediment (Dong-Mak; three year average=$683;m^{-2}d^{-1}$) than sandy sediment(Yeocha; three year average=$457;m^{-2}d^{-1}$). The SOD was high in summer and tended to be lower in winter. During the sediment incubation in Apr. 2002, production of oxygen from sediment was observed implying active benthic photosynthesis. Denitrification was also higher in muddy sediment (Dong-Mak: $5.4;m^{-2}d^{-1}$) than sandy sediment (Yeocha; $3.4;m^{-2}d^{-1}$). The denitrification rate corresponds to the carbon remineralization rate of 9.3 and $5.9\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively. The denitrification rates were lower compared to rates observed in other coastal area $(0{\sim}200\;{\mu}mole\;m^{-2}h^{-1})$. Although Kwanghwa tidal flat sediments are replete in organic matter, remineralization activity seems to be limited by the availability of labile organic matter. The Kwangwha tidal flat may have potential to effectively remove large load of organic matter. Net remineralization rates were 196 and $132\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively.

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.