• Title/Summary/Keyword: 통행수요

Search Result 355, Processing Time 0.02 seconds

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

A Study of IndoorGML Automatic Generation using IFC - Focus on Primal Space - (IFC를 이용한 IndoorGML 데이터 자동 생성에 관한 연구 - Primal Space를 중심으로 -)

  • Nam, Sang Kwan;Jang, Hanme;Kang, Hye Young;Choi, Hyun Sang;Lee, Ji Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.623-633
    • /
    • 2020
  • As the time spent in indoor space has increased, the demand for services targeting indoor spaces also continues to increase. To provide indoor spatial information services, the construction of indoor spatial information should be done first. In the study, a method of generation IndoorGML, which is the international standard data format for Indoor space, from existing BIM data. The characteristics of IFC objects were investigated, and objects that need to be converted to IndoorGML were selected and classified into objects that restrict the expression of Indoor space and internal passages. Using the proposed method, a part of data set provided by the BIMserver github and the IFC model of the 21st Century Building in University of Seoul were used to perform experiments to generate PrimalSpaceFeatures of IndoorGML. As a result of the experiments, the geometric information of IFC objects was represented completely as IndoorGML, and it was shown that NavigableBoundary, one of major features of PrimalSpaceFeatures in IndoorGML, was accurately generated. In the future, the proposed method will improve to generate various types of objects such as IfcStair, and additional method for automatically generating MultiLayeredGraph of IndoorGML using PrimalSpaceFeatures should be developed to be sure of completeness of IndoorGML.

An Investigation of Rider Behavior to Transfer Seoul Metropolitan Transit Using Public Transport Card Data (교통카드 데이터를 이용한 수도권 광역급행철도 환승행태에 관한 연구)

  • Gun ki Jung;Dong min Lee;Sun hoon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.146-164
    • /
    • 2022
  • Recently, the Korean government promoted the construction of metropolitan express subway to connect major transportation hub in the metropolitan area within 30 minutes. Most stations of the metropolitan express subway are connected to existing subway stations, so the importance of transfer increased. Although many studies have been conducted on the effect of transfer penalty on route choice, there are few studies on the transfer behavior of the metropolitan express subway. Therefore, in this study, a transfer behavior analysis was conducted on the Shinbundang Line, a representative metropolitan express subway. To analyze the transfer behavior according to the degree of traffic congestion and the presence of fare payment, route choice models were made using transport card data divided according to week, time, and user characteristics. As a result of the analysis, users of the metropolitan express subway had greater disutility to the transfer waiting time compared to the transfer moving time. Furthermore, especially during the peak time, EIVM(Equivalent in-vehicle minutes) of the transfer waiting time was 3.51. In this study, EIVM for metropolitan express subway users were analyzed to be 2.6 minutes, which is significantly lower than the results of previous studies on subways. This suggests that there is a difference in the transfer penalty between subways and metropolitan express subway, and that it is necessary to apply the transfer penalty between subways and express subway differently when forecasting subway traffic demand.

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.

An Analysis of Accessibility to Hydrogen Charging Stations in Seoul Based on Location-Allocation Models (입지배분모형 기반의 서울시 수소충전소 접근성 분석)

  • Sang-Gyoon Kim;Jong-Seok Won;Yong-Beom Pyeon;Min-Kyung Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.339-350
    • /
    • 2024
  • Purpose: This study analyzes accessibility of 10 hydrogen charging stations in Seoul and identifies areas that were difficult to access. The purpose is to re-analyze accessibility by adding a new location in terms of equity and safety of location placement, and then draw implications by comparing the improvement effects. Method: By applying the location-allocation model and the service area model based on network analysis of the ArcGIS program, areas with weak access were identified. The location selection method applied the 'Minimize Facilities' method in consideration of the need for rapid arrival to insufficient hydrogen charging stations. The limit distance for arrival within a specific time was analyzed by applying the average vehicle traffic speed(23.1km/h, Seoul Open Data Square) in 2022 to three categories: 3,850m(10minutes), 5,775m(15minutes), 7,700m(20minutes). In order to minimize conflicts over the installation of hydrogen charging stations, special standards of the Ministry of Trade, Industry and Energy applied to derive candidate sites for additional installation of hydrogen charging stations among existing gas stations and LPG/CNG charging stations. Result: As a result of the analysis, it was confirmed that accessibility was significantly improved by installing 5 new hydrogen charging stations at relatively safe gas stations and LPG/CNG charging stations in areas where access to the existing 10 hydrogen charging stations is weak within 20 minutes. Nevertheless, it was found that there are still areas where access remains difficult. Conclusion: The location allocation model is used to identify areas where access to hydrogen charging stations is difficult and prioritize installation, decision-making to select locations for hydrogen charging stations based on scientific evidence can be supported.