• Title/Summary/Keyword: 통신량

Search Result 4,543, Processing Time 0.026 seconds

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Diversification of Rice Quality for Processing. Physicochemical Characteristics and Inheritance of Floury Endosperm Mutants (특수 가공용 미질개발 : 분상질배유 돌연변이 계통의 이화학적특성과 유전)

  • Kim, Kwang-Ho;Koh, Hee-Jong;Lee, Jang-Hoon;Park, Sun-Zik;Heu, Mun-Hue
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.264-274
    • /
    • 1993
  • This study was carried out to assess the agronomic characters and physicochemical properties of floury and chalky-endosperm mutant lines induced by chemical mutagen treatment to rice varieties, Hwacheongbyeo and IR24. Linkage analysis of a floury-endosperm gene was carried out using linkage testers. The grain size of brown rice of the mutants was smaller than that of the original varieties. The l, 000-grain and 1$\ell$ weight were lighter in the mutants compared with those in the original varieties. The compound starch granules in the endosperm cell of the mutants showed a loosely-packed crystalline structure. Amylose contents in mutants ranged from 16.9 to 28.5%. Crude protein contents of the mutants were not significantly different from the original rice variety, Hwacheongbyeo, but white core mutant(line 47106) derived from IR24 showed higher protein(l1.32%) compared with IR24(8.30%). The mutants showed slightly harder gel characteristics, and much lower viscosity in Amylograph than original varieties. Steamed rice-cakes from mutant lines showed greater volume than those from original varieties. During the process of alcohol fermentation, Brix in the mutants(especially floury mutants) decreased faster and the alcohol production after 10-day fermentation was much greater in the mutants than in the original varieties. Three different gene loci for floury endosperm characteristics were identified from the allelism test among mutant lines, and the genes were tentatively symbolized as flo-a, flo-b and flo-c, respectively. A floury gene, flo-a, was linked with lg(liguleless) gene in the linkage group N, with R.V. 5.76$\pm$1.72%.

  • PDF

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.