• Title/Summary/Keyword: 통기 구조

Search Result 48, Processing Time 0.236 seconds

Structural analysis and design proposal of fine dust mask with nanofiber filter fabricated using electrospinning (전기방사 나노섬유 필터를 활용한 미세먼지 마스크의 구조 분석 및 디자인 제안)

  • Han, Sang Yun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.191-195
    • /
    • 2017
  • The microstructures of nonwoven fabric with and without nanofibers used as a filter for air purification type mask were investigated using scanning electron microscope. Moreover, we proposed a new mask design which is effective in the improvement of the fine dust blocking property. When comparing to nonwoven fabrics of which an average diameter was $25{\mu}m$, the nanofibers formed by the electrospinning process had a tight mesh structure arranged irregularly with a relatively large specific surface area, which could be associated with their much smaller diameter ranging from 25 to 120 nm. Such a prominent structural feature at nanofibers led to mechanical adsorption of fine particles, resulting in enhancement of filtering behavior maintaining high permeability. In addition to the excellent performance of the mask filter, wearing the mask properly is expected to maximize the blocking property of fine dust. To meet such a requirement, a new mask design that can be closely attached to the face in order to effectively block fine dust entering the gap between the face and the mask.

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

전기 방사 방법을 이용한 산화아연 나노 섬유의 합성법과 일산화질소 가스에 대한 특성

  • Kim, Ok-Gil;Kim, Hyo-Jin;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.101.1-101.1
    • /
    • 2012
  • 이번 연구에서는 전기 방사 방법을 이용하여 합성된 산화아연 나노 섬유의 일산화질소 가스에 대한 반응 특성을 조사하였다. 이 산화아연 나노 섬유는 증류수에 용해시킨 아연 아세테이트(zinc acetate)와 폴리 비닐 알콜(poly vinyl alchol, PVA)로 만들어진 용액이 전기 방사되어지며 만들어지게 된다. 무엇보다도 나노 섬유의 직경은 용액의 점도에 의해 결정되었다. 따라서 산화아연 나노 섬유의 고른 두께를 형성하기 위하여 PVA의 양을 조절하여 적절한 용액의 농도를 찾게 되었다. 이후 진행된 열처리 공정을 통해서 우리는 직경이 30~100나노미터 가량의 나노 섬유를 얻을 수 있었으며 무작위로 배열된 통기성 네크워크 구조를 얻게 되었다. 표면 분석을 위하여 주사현미경을 이용하였는데, 산화아연 나노 섬유의 표면은 열처리 전과 후로 나누어 관찰되었으며 열처리 전보다 열처리 후의 표면이 좀 더 거친 것으로 확인되었다. 이는 열처리 공정을 거치면서 효과적으로 유기물들의 제거가 이루어진 것을 짐작할 수 있었다. 일산화질소 가스에 대한 특성 평가를 위해 자체 제작된 전류-전압 측정 장치(I-V measurement)가 사용되었다. 다양한 작동온도와 다양한 일산화질소 가스 농도의 변화를 주며 얻어진 응답도를 통해서, 전기 방사를 통해 만들어진 산화아연 나노 섬유 구조 기반의 가스 센서는 두드러질만큼 좋은 응답도를 가졌고 작동 온도 $200^{\circ}C$에서 일산화질소 가스에 대한 최대 민감도를 보임을 분명히 확인할 수 있었다. 특히, 산화아연 나노 섬유 구조 기반의 가스 센서는 ppm이하의 낮은 일산화질소 가스 또한 감지할 수 있음을 확인하였다. 이러한 결과들은 전기 방사를 통해 만들어진 산화아연 나노 섬유기반의 가스 센서는 저비용, 고감도의 장점을 갖는 일산화질소 가스 센서가 될 것임을 알 수 있었다.

  • PDF

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Finite Element Analysis of a Ventilating Box Structure (통기성 상자 구조물에 대한 유한요소 해석)

  • 박종민;권순구
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.557-564
    • /
    • 2002
  • Corrugated board is an efficient low-cost structure material fur the boxes that are widely used for transporting, storing and distributing goods. Corrugated board is also considered as an orthotropic because the principal material directions are the same as in paperboard. The purpose of this study was to elucidate the principal design parameters of ventilating box through the FEA on the various types of ventilating hole. From the viewpoint of the stress distribution and stress level, the optimum pattern and location of the ventilating hole were vertically oblong, and symmetry position with a short distance to the right and left from the center of front and rear panel. And, the optimum location and pattern of hand hole were a short distance to the top from the center of both side panels, and modified shape to increase the radius of curvature of both side in horizontal oblong. In general, the optimum pattern and location of both the ventilating hole and hand hole based on the FEM analysis were well verified by experimental investigation. It is suggested that decrease in compressive strength of the box could be minimized in the same ventilating hole area under the condition of the length of major axis of ventilating hole is less than 1/4 of box length, the ratio of minor axis/major axis is 113.5∼l/2.5, and number of the ventilating holes is even and symmetrical.

An Evaluational Investigation of the Physical Properties for the Commercially Available Cervical Braces (수종 시판 경추보조기의 물성에 관한 평가조사)

  • Park, Jong-Chul;Kim, Kyung-Tae;Suh, Hwal
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 1997
  • This is to investigate the physical properties of the commercially available Soft, Thomas, Minerva, and Philadelphia cervical braces which are widely used in orthopedics, neurosurgery, and rehabilitation medicine clinics as assisting devices for physical stabilization of cervical vertebrates, to use as a basic data for designing new type brace. Tensile strengths were observed by universal mechanical measuring device and Thomas brace required the highest stress to break by tensile stress. Durabilities against continuous frictional forces were also determined, and Minerva brace demonstrated the longest frictional time until being perforated. According to these results, poly ethlene is recommendable as a frame and preparation of pores in the material is favorable to provide ventilation to skin.

  • PDF

Design of a Helmet with Improved Ventilation for Personal Mobility (통기성을 개선한 개인용 이동장치 헬멧 구조 설계)

  • Jin-San Oh;Seong-Jun Kwon;Min-Ki Hong;Seong-Won Jeong
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2022
  • A helmet is essential for safety when operating personal mobility. However, user's actual helmet wear rate is low due to the inconvenience of wearing and poor ventilation. In this study, a new helmet structure with improved ventilation for personal mobility devices was designed. To design a new structure with improved breathability compared to the existing helmet while satisfying the safety regulations for the helmet, a generative design method was applied to the shock-absorbing liner of the helmet. In addition, other materials were applied to create a structure with improved ventilation while maintaining safety. The generated design result was verified for shock absorption through simulation. As a result of the study, EPS, the current material was replaced with CFRP and Kevlar, and the structure was changed. This design was judged to satisfy safety regulations against impact. The new helmet structure is expected to improve the helmet usability for personal mobility and increase the helmet wear rate of users.

Temperature Prediction of Underground Working Place Using Artificial Neural Networks (인공신경망을 이용한 심부 갱내온도 예측)

  • Kim, Yun-Kwang;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.301-310
    • /
    • 2007
  • The prediction of temperature in the workings for the propriety examination for the development of a deep coal bed and the ventilation design is fairly important. It is quite demanding to obtain precise thermal conductivity of rock due to the variety and the complexity of the rock types contiguous to the coal bed. Therefore, to estimate the thermal conductivity corresponding to this geological situation and complex gallery conditions, a computing program which is TemPredict, is developed in this study. It employs Artificial Neural Network and calculates the climatic conditions in galleries. This advanced neural network is based upon the Back-Propagation Algorithm and composed of the input layers that are acceptant of the physical and geological factors of the coal bed and the hidden layers each of which has the 5 and 3 neurons. To verify TemPredict, the calculated result is compared with the measured one at the entrance of -300 ML 9X of Jang-sung production department, Jang-sung Coal Mine. The difference between the results calculated by TemPredict ($25.65^{\circ}C$) and measured ($25.7^{\circ}C$) is only $0.05^{\circ}C$, which is less than the allowable error 5%. The result has more than 95% of very high reliability. The temperature prediction for the main carriage gallery 9X in -425 ML under construction when it is completed is made. Its result is $28.2^{\circ}C$. In the future, it would contribute to the ventilation design for the mine and the underground structures.