• Title/Summary/Keyword: 통과열차

Search Result 118, Processing Time 0.026 seconds

A Study on Wind Pressure inside Cheonan High Speed Train Station (고속전철 천안역사 내부의 풍압연구)

  • Won Chan-Shik;Kim Sa Ryang;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF

Dynamic Behavior of Railway Bridge Due to Trains Moving on Double Tracks (복선선로를 통과하는 열차에 의한 철도교량의 동적거동)

  • 최창근;송명관;양신추
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.450-457
    • /
    • 1999
  • In this study, the simplified method for 3-dimensional vehicle-bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate vehicle-bridge interaction analysis. Investigations mainly into the influence of vehicle speed on vehicle-bridge interactions are carried out for case that two trains move respectively on their tracks in the opposite direction.

  • PDF

Analyses of the Railway Noise Transmission Characteristics of the Rooms in High-speed Train Stations Depending on Building Types (고속철도의 역사형식에 따른 철도소음의 실내 전달특성 분석)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.385-393
    • /
    • 2015
  • The speed of train has rapidly been increased in accordance with the developed railway technology. Nowadays, high-speed trains were introduced which has the speed faster than 400 km/h. In Korea, a lots of efforts were undertaken to increase the speed of train faster than 350 km/h, however noise and vibration are still the main problems to solve for realization of the high-speed train. In the case of operation speed faster than 350 km/h, it can be easily presumed that the noise and vibration damages could be increased in the train stations which are close to the passing railway tracks. Thus, the noise in the five different types of high-speed train stations were analyzed including stations built on the ground, underground, under rail, and two types on rail. The present paper predicts noises inside the stations depending on the speed of the passing trains and analyze the noise comparing with noise criteria (NC). Sound insulation performance of each part of buildings was calculated using the transmission noise formula and computer modeling, Finally, a series of processes were introduced to satisfy the aural environment with the optimum interior noise criteria by changing interior finishing materials.

Development of the Method Estimating Sections Occurring Intensive PM10 in a Subway Tunnel (For the South Section (Cheongdam~Jangseungbaegi) of Subway Line 7 in Seoul) (지하철 터널의 미세먼지 집중 발생구간 추정방법 개발 (서울 지하철 7호선 남단구간 (청담역~장승배기역) 을 대상으로))

  • Park, Jong-Heon;Park, Jae-Cheol;Eum, Seong-Jik
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.121-131
    • /
    • 2010
  • To effectively reduce PM10 generated in concourses and platforms of subway stations, a research is being conducted to find the PM10 source. The main source of PM10 in subway stations was PM10 generated in the main line tunnels, which was generated in proportion to the frequency of the train operation. Each amount of the PM10 generated when the train was operated once, was constant regardless of the time. On the assumption that the PM10 level in a tunnel of a line is a sum of newly generated amount of dust when the subway passes and the amount carried from the adjacent stations by the wind generated from the subway rolling stocks, the method which estimates the intensive PM10 occurring section was developed and applied to the 12 stations between Cheongdam and Jangseungbaegi in Seoul Subway Line 7.

Study on the Levitation Stability of Maglev Vehicle considering the Vibration of Steel Switch Track (강재 분기기의 진동을 고려한 자기부상열차 부상안정성 연구)

  • Han, Jong-Boo;Park, Jinwoo;Han, Hyung-Suk;Lee, Jong-Min;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.175-185
    • /
    • 2015
  • Generally, in the train area, switch tracks have required high reliability because this system is directly associated with derailment. Especially, switch tracks of Maglev vehicles must be moved in terms of the whole geometric characteristics, in which the bogies are encased in the switch track. For this reason, switch track was constructed with steel lighter than concrete girders. But, the steel switch track was weak because of structural vibration as well as structural deformation. Therefore, it is important to predict the levitation stability when a vehicle passes over flexible switch track. The aims of this paper are to develop a coupled dynamic model to describe the relationship between a Maglev vehicle and switch track and to predict the levitation stability. In order to develop the coupled dynamic model, a three dimensional vehicle model was developed based on multibody dynamics; a switch model was made using the modal superposition method. And, the developed model was verified using comparison measured data.

Characteristics of Noise and Vibration emitted from Turnout System (열차 통과시 분기기 인근 소음진동 발생특성)

  • Im, Jung-Bin;Lee, Hong-Ki;Park, Hae-Dong;Um, Ki-Young;Um, Ju-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.747-750
    • /
    • 2006
  • A turnout which permits trains to pass from one track to another has a disconnecting rail component, namely a crossing, so that noise and vibration arc occurred abruptly when train is passing through it. In Korea, it is planned to adopt the high speed tilting train, which operates at the speed of 180 km/h, at the conventional line. However, for application of the tilting train, it is prerequisite to establish the stable turnout system allowing the tilting train to pass through it without reducing speed. This study was performed to evaluate noise and vibration emitted from the prototype turnout which is developed for speed-up of the conventional line. For the purpose, noise and vibration were measured at near the conventional turnout and the improved one, which is constructed at Waegwan station and Kumi station of Gyeongbu line, respectively.

  • PDF

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Optimization of Ballast Depth of Ballasted Track Bridges to Improve Ride Comfort (승차감 향상을 위한 유도상교량의 도상두께 최적화)

  • Kim, Kwan-Hyung;Kwon, Soon-Jung;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.867-874
    • /
    • 2011
  • The ballast abrasion occurs on the ballasted track upon bridges more than soil roadbed because the track vibration occurs a lot in the ballasted track upon bridges due to girder vibration when a train's weight is loaded onto track even though the identical ballast is used. The phenomena of mud pumping especially, which occurs when drainage is not properly secured for heavy rain, leads to the increase of maintenance work load and the decline of ride comfort. The ballast thickness range in domestic railroad construction rule is uniformly set up according to the design speed of railroad and passing tonnage of train without considering field conditions which is considered in foreign railroad companies. The purpose of this study is to verify the effect of vibration decrease by measuring the acceleration, displacement and ride comfort of ballasted track with the change of ballast thickness on the ballast tracked bridges and to suggest the optimal height of ballast on the Yocheon Bridge built for the test in Honam Line.

Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway (고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발)

  • Choi, Chan-Yong;Choi, Won-Il;Han, Sang-Jae;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.55-69
    • /
    • 2013
  • An alternative design method of existing methods based on elastic theory the design method of roadbed considering plastic deformation of roadbed and stress-strain at roadbed materials with the cyclic loading of trains passing. The characteristics of the developed design method considering traffic load, number of cyclic loading and resilience modulus of roadbed materials can evaluate elastic strain as well as plastic settlement with allowable design criteria. The proposed design method is applied to standard roadbed section drawing of HONAM high-speed railway considering design conditions such as allowable elastic and plastic settlement, train speed, the tonnage of trains. As a result, required levels of resilience modulus model parameter ($A_E$), unconfined compressive strength, types of soil material were evaluated.

A Case Design of a Tunnel Passing Under an Adjacent Unlined Tunnel Designated As a Cultural property (문화재로 지정된 무라이닝 암반터널 하부통과 설계사례)

  • Kim, Seon-Hong;Jeong, Dong-Ho;Seok, Jin-Ho;Park, Myoung-Lyul
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.152-164
    • /
    • 2007
  • Recently as increasing the amounts of cargoes and passengers, it is necessary to improving railway capacity and speed. So the constructions of improving the existing railway line have been advanced. Sometimes the new railway tunnel is built to adjacent the existing railway line. Furthermore the new tunnel might be built near the existing facility within the tunnel width. In this case, it should be analyzed the influence of existing tunnel and if it is necessary, it should be taken the appropriate counterplan. The major analysis contents are follows. One is the influence on the existing tunnel by a blasting and train vibration and the other is stability problem of the existing tunnel by excavation of new tunnel. Therefore, we peformed the following analysis. Refer to a domestic and foreign standard and paper, the permitting level of blasting vibration is decided and the excavation plan of the new tunnel are designed. The numerical analysis is performed about the stability of the existing tunnel and new tunnel. The influence of the train vibration on tunnel is analyzed by the empirical equation.