본 연구의 목적은 국내에서 수행된 습지가치추정 선행연구를 대상으로 메타회귀분석을 실시하여, 습지가치에 영향을 미치는 인자들을 규명하고 정책적 시사점을 도출하며, 국내 자연환경 가치추정 분야에 메타회귀분석의 적용 가능성을 검토하는 데 있다. 메타회귀분석은 기존에 축적되어 있는 연구로부터의 정보를 희귀분석을 사용하여 종합하는 기법으로써, 선행연구에서 관찰되는 가치추정치를 종속변수로 연구의 특성, 예를 들면, 대상지의 특성, 추정기법, 모집단의 인구 사회학적 특성 등을 설명변수로 설정하여 분석한다. 이야기체 문헌검토와 비교할 때 메타회귀분석의 가장 큰 장점은 연구자의 자의적 판단을 피하고 통계적 신뢰성에 기반을 둔 객관적인 결론을 도출할 수 있다는 점이다. 실증분석 결과 우리나라의 경우 단위면적당 습지가치는 어떤 습지기능을 대상으로 하였는지보다는 어떤 가치추정기법을 사용했는지에 따라 더 큰 영향을 받는 것으로 나타났다. 또한 습지면적과 습지가치는 유의한 음의 상관관계를 보임으로써 생태학적 원칙보다는 경제학적 원칙이 적용되고 있음을 확인할 수 있었으며, 이러한 점은 습지보호 및 관리정책에 시사하는 바가 크다. 본 연구의 사례분석을 통해 메타회귀분석은 선행연구 결과를 종합하고 관련정책 수립시 유용한 정보를 제공할 수 있는 분석의 틀로써 충분한 활용 가능성을 갖고 있는 것으로 판단된다. 그러나 본 연구는 메타분석의 활용 가능성뿐만 아니라 한계 및 불확실성의 존재를 확인하는 계기도 되었다. 메타회귀분석의 유효성과 신뢰성을 높이기 위해서는 지속적인 관련연구의 DB 구축, 개별연구의 질 향상을 위한 노력, 추정모델의 개선을 위한 연구 등이 병행해서 이루어져야 할 것으로 생각된다.
컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
학술잡지 구입 예산의 구입비용 상승에 따른 압력으로 지난 수십년간 학술잡지의 선택에 영향을 미치는 요인들에 대한 연구가 활발히 진행되어 왔지만, 학술잡지의 선택에 대한 만족할만한 이론적 틀이 제시되지 못하였다. 이에 따라 본 연구에서는 의학도서관에서 의학분야의 학술잡지의 선택에 영향을 미치는 요인들을 확인하여 이러한 이론적 틀을 제시할 수 있는 근거를 마련코자 한다. 본 연구는 상관관계 분석과 로지스틱회귀분석을 통해 학술잡지선택의 분산을 설명하고, 나아가 예측하는 통계적 모델들을 여러 변수조합을 이용해 제시한다. 또한 이러한 모델의 실제적 적용과 향후 연구방향을 논의한다.
NPEG은 ISO 산하의 표준화 위원회에서 동영상 압축 기술의 필요에 의해 표준화된 동영상 압축 기술로 통신상에서 더 높은 비트율의 고화질 동화상 실현의 요구에 의해 1995년에 MPEG 2가 개발되었다. 본 논문에서는 VBR MPEG의 코드화된 완전한 동화상 통신을 위해 비선형 시계열 방식으로 효율적이고도 정확한 TAR모델 설계 알고리즘을 제안하며 실질적인 동영상 비디오 추적에 대한 통계적 특성을 보여주는 시뮬레이션 결과를 제시하고자 한다.
암석의 물리적 특성과 슈미트반발경도 결과로부터 일축압축강도를 예측하기 위한 인공신경망 이론의 적용과 최적 모델 구성에 대하여 연구하였다. 대구지 역의 퇴적암(사암, 셰일) 시료 55개가 사용되었으며, 이들 중 인공신경망 학습을 위하여 45개가 사용되었고 학습결과의 검증을 위하여 10개의 시료가 이용되었다. 인공신경망에 의한 추산 결과와 비교하기 위하여 통계적 방법을 통한 회귀분석을 통하여 역학특성의 상관식을 도출하였으며, 인공신경망의 유효성 검증을 위하여 모델 구축 시 에 사용하지 않은 새로운 자료에 대해 예측을 실시하고 통계적 방법에 의한 결과 및 실내 시험 결과와 비교하였다. 본 연구에 사용한 인공신경망모델에는 백프로퍼게이션 학습 알고리즘(back-propagation teaming algorithm)이 적용되었으며, 인공신경망의 학습효율 및 예측능력에 영향을 미치는 입ㆍ출력층 및 은닉층의 구조, 학습율, 시스템오차율 등을 달리 하며 학습을 시행하였다. 그 결과 통계적 분석보다는 인공신경망의 학습에 의한 예측결과가 더 나은 예측능력을 나타냈다.
본 연구에서는 서울지역의 지상 미세먼지($PM_{2.5}$) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 $M_6$모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 $M_6$ 모델을 사용하여 계산된 $PM_{2.5}$와 관측된 $PM_{2.5}$농도 사이의 결과는 상관계수(R=0.62)와 평균제곱근오차($RMSE=10.70{\mu}gm^{-3}$)이다. 또한 산출된 계절별 지표면 $PM_{2.5}$농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 $PM_{2.5}$산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 $PM_{2.5}$를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.
국내의 노후 철도교량이 증가함에 따라 노후화로 인한 유지관리비가 점점 증가하고 있으며, 지속적인 관리가 더욱 더 중요해지고 있다. 하지만 관리해야하는 노후 시설물은 증가하지만, 노후 시설물을 점검 및 진단을 할 수 있는 전문 인력은 부족해지고 있다. 이러한 문제를 해결하기 위해 본 연구는 정적 변형률 응답 데이터를 적용하여 AI 기술의 머신러닝 기법으로 구조물의 국부적인 손상을 탐지하는 개선된 학습모델을 제시하고자 한다. 손상탐지 머신러닝 학습 모델을 구성하기 위해 우선 무도상 철도 판형교의 설계도면을 참고하여 교량의 해석모델을 설정하였으며, 설정된 해석모델로 손상시나리오에 따른 정적변형률 데이터를 추출하여 통계적 기법을 이용해 교량의 신뢰도 기반의 Local 손상 지수를 제시하였다. 손상 탐지는 손상 유무 탐지, 크기 탐지, 위치 탐지 3단계의 과정을 수행하여 손상 크기 탐지에서 선형 회귀 모델을 추가로 고려해 임의의 손상을 탐지하였으며, 최종적으로 손상 탐지 머신러닝 분류 학습 모델과 회귀 모델을 이용한 임의의 손상 위치를 추정 및 검증하였다.
특수일 부하를 예측하기 위하여 BP 신경회로망 모형과 다중 회귀모형을 구성한다. 신경회로망 모형은 패턴 변환비를 이용하고, 다중회귀 모형은 평일 환산비를 이용하여 특수일 부하를 예측한다. 주간 피크 부하예측 모형에 패턴 변환비를 이용하여 짧고 긴 특수일 부하를 예측 한 결과 주간 평균 오차율이 1∼2[%]로 나와 본 기법의 적합성을 확인할 수 있다. 하지만, 패턴 변환비 방법으로는 하계의 특수일 부하 예측은 어려웠다. 따라서 기온-습도, 불쾌지수 등을 설명변수로 하는 다중 회귀 모형을 구성하고 평일 환산비를 이용하여 하계의 특수일 부하를 예측한다. 평일만의 예측 모형과 예측 결과를 비교해 보면 월 평균 오차율이 비슷하게 나와 이용한 방법의 적합성을 확인하였다. 그리고, 통계적 검정을 통해 구성한 예측 모형의 유효성을 입증할 수 있었다. 이로서 본 연구에서 제시한 특수일 부하를 예측하는 기법의 적합성을 확인함으로서 피크 부하 예측시 큰 난점 중의 하나가 해결되었다.
첨단의 DGPS 수신자료를 이용하여 도로를 통행하는 차량의 기본적인 운행특성을 분석하기 위한 것이 연구의 주 목적이다. 이를 위해 대구시 도심을 시험차량이 DGPS 수신기를 탑재하여 통행하면서 자료를 수집하였다. 차량의 통행시간은 총 21분 6초가 소요되었으며, 이때 시간경과에 따른 차량의 위치를 2초 단위로 수신하였다. 한편, DGPS 수신자료와 수치지도의 오차보정을 위해 반월당네거리 부근에 기준점을 설정하고, 삼각원점을 이용하여 좌표값을 결정하였다. 이를 기준으로 1/5,000의 수치지도와 DGPS 수신자료에 대한 보정을 행하였으며, 보정결과 오차폭을 0.3m 이내의 범위로 줄일 수 있었다. 4개의 구간별로 차량의 통행속도와 주행속도를 비교하였고, 가 감속도에 대한 분석과 이것들이 차량의 속도와 주행거리에 비례(혹은 반비례)하는 관계를 회귀모델을 통해 규명하였다. 또한 차량이 통행중 정지한 순간을 제외하고 실제 주행한 속도자료는 278개이며, 이에 대한 통계적 분석을 행하였다. 그리고 통행중 정지한 차량에 대한 정지회수와 정지시간, 정지요인을 분석하였다.
1998년에 창립한 한국자료분석 학회지는 자료분석에 기반한 다양한 전공분야를 위해 현재까지 응용학회지로서 역할을 해오고 있다. 본 연구에서는 이러한 한국자료분석 학회지의 본연의 목적을 잘 수행해오고 있는지 최근 10년간 학회지 요약문을 통해 분석하였다. 분석은 한국연구재단에서 제공한 온라인 저널 홈페이지를 통해 2006년부터 2016년까지의 영문 요약문 2680개를 웹크롤링하여 토픽모델을 적용하였다. 분석결과로 18개의 토픽이 선정되었으며 이에 대한 토픽을 해석한 결과 자료분석학회지는 간호학, 경영학(마케팅), 경제학 등 여러 분야를 다루고 있으며 분석방법으로 회귀분석, 가설검정, 데이터마이닝(연관성분석), 요인분석 등이 많이 이용되고 있음을 볼 수 있었다. 그리고 단어들의 연관성(association rule)분석을 통하여 통계적으로 유의한 연관성 규칙 10개를 제시하였다. 여기서 연관성규칙의 통계적 유의성검정은 피셔의 정확검정(Fisher's exact test)을 사용하였다. 또한 연구주제(토픽)의 변화를 살펴본 결과 전반기에는 조사연구가, 후반기에는 대조 연구가 많아졌음을 볼 수 있고 또한 회귀분석과 요인분석은 전, 후반기 구분 없이 자료분석에서 공통적으로 많이 사용하는 통계적 방법임을 알 수 있었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.