• 제목/요약/키워드: 토픽 키워드

검색결과 227건 처리시간 0.017초

비지도학습 기반의 행정부서별 신문기사 자동분류 연구 (A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments)

  • 김현종;유승의;이철호;남광우
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.345-351
    • /
    • 2020
  • 행정기관은 정책 대응성을 제고하기 위해 빅데이터 분석에 관심을 기울이고 있다. 빅데이터 중 뉴스 기사는 정책 이슈와 정책에 대한 여론을 파악하는데 중요한 자료로 활용될 수 있다. 한편으로 새로운 온라인 매체의 등장으로 뉴스 기사의 생산은 급격히 증가하고 있어 문서 자동분류를 통해 기사를 수집할 필요가 있다. 그러나 기존 뉴스 기사의 범주와 키워드 검색방법으로는 특정 행정기관 및 부서별로 업무에 관련된 기사를 자동적으로 수집하는 것에 한계가 있었다. 또한 기존의 지도학습 기반의 분류 기법은 다량의 학습 데이터가 필요한 단점을 가지고 있다. 이에 본 연구에서는 행정부서의 업무특징을 포함한 분류사전을 활용하여 기사의 분류를 효과적으로 처리하기 위한 방법을 제안한다. 이를 위해 행정 기관의 업무와 신문기사를 Word2Vec와 토픽모델링 기법으로 부서별 특징을 추출하여 분류사전을 생성하고, 행정 부서별로 신문기사를 자동분류 한 결과 71%정도의 정확도를 얻었다. 본 연구는 행정부서별 신문기사를 자동분류하기 위해 부서별 업무 특징 추출 방법과 비지도학습 기반의 자동분류 방법을 제시하였다는 학문적·실무적 기여점이 있다.

텍스트 마이닝을 적용한 사회서비스원 언론보도기사 분석 (An Analysis on Media Trends in Public Agency for Social Service Applying Text Mining)

  • 박해긍;윤기혁
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.41-48
    • /
    • 2022
  • 본 연구는 사회서비스원과 관련한 국내 언론보도기사를 주요 원자료로 삼고, 기사에 내재된 주요 키워드 및 토픽을 분석하여 사회서비스원과 관련한 이슈, 즉 사회적 인식이 어떻게 형성되었는지를 실증적으로 탐색하고자 하였다. 본 연구는 사회서비스원에 관한 사회 전반적인 인식 및 동향을 여론을 통해 파악한다는 점에서 의의가 있다. 언론동향의 데이터를 추출하기 위해 검색은 빅테이터 분석 시스템인 텍스톰을 사용하여 대표적 포털인 네이버 뉴스와 다음 뉴스에서 자료를 수집하였다. 수집된 기사는 2020년도 1,299개, 2021년도 총 1,410로, 총 2,709개였다. 분석결과로 첫째, 텍스트 출현빈도와 관련해서 가장 많이 도출된 단어는 '사회서비스원', '설립', '운영' 등으로 주로 사회서비스원의 설립과 관련한 내용이 주를 이루고 있었다. 둘째, N-gram분석결과 사회서비스원과 직접 관련된 단어의 쌍(pairs)은 '사회서비스원과 공공', '사회서비스원과 개원', '사회서비스원과 출범', '사회서비스원과 원장', '사회서비스원과 직원', '사회서비스원과 돌봄종사자' 등으로 나타났다. 셋째, TF-IDF 분석결과 및 단어 네트워크 분석결과에서는 단어출현빈도와 N-gram의 결과와 유사하게 '설립', '운영', '공공', '출범', '제공', '개원', '개최', '돌봄' 등의 결과가 도출되었다. 상기분석결과를 통해 긴급돌봄지원단의 강화, 구체적인 사업화, 일자리의 안정화 등을 제언하였다.

온톨로지 시각화를 활용한 사용자 리뷰 분석 기반 영화 추천 시스템 (Movie Recommended System base on Analysis for the User Review utilizing Ontology Visualization)

  • 문성민;김기남;최경철;이경원
    • 디자인융복합연구
    • /
    • 제15권2호
    • /
    • pp.347-368
    • /
    • 2016
  • 최근 소비자 구전정보에 대한 연구들은 소비자가 제품 구매 과정에서 다른 소비자의 구전에 의한 정보를 활용한다는 연구 결과를 시사하고 있다. 본 연구는 제품에 대한 소비자의 의견을 파악하고 활용할 수 있도록 오피니언 마이닝과 시각화를 통해 도움을 줄 수 있는 방법을 제안하고자 한다. 이를 위해 최근 들어 관람할 영화를 선택할 때 인터넷 상의 영화리뷰를 참고 하는 상황이 증가함을 고려하여 "영화" 도메인의 온톨로지를 구축하고 오피니언 마이닝을 수행하여 시각화 한 후 그 결과에 대해 논하고자 한다. 온톨로지를 구축하는 과정에서 평가요소에 대한 속성 분류뿐만 아니라 평가요소에 대한 서술어 사전을 구성하였다는 점에서 기존의 연구와 차별성이 있으며 분석 결과를 통해 이러한 방법이 오피니언 마이닝에 유효함을 증명하고자 한다. 연구를 통해 도출한 결과는 크게 세 가지로 나누어 볼 수 있다. 첫째, 본 연구에서는 기존에 구축된 온톨로지를 활용하지 않고 키워드 추출과 토픽모델링을 활용하여 영화 도메인에 대한 온톨로지를 구축하는 방법에 대해 서술하였다. 둘째, 개별 영화에 대한 시각화 분석을 시행하여 영화에 대한 관객의 종합적인 의견을 한눈에 파악할 수 있도록 하였다. 셋째, 제품에 대한 평가 결과에 따라 유사한 평가를 받은 제품끼리 군집화 되는 것을 발견하였으며 본 연구의 분석에 사용된 130개의 영화는 크게 3개의 집단으로 군집화 됨을 보였다.

텍스트마이닝을 활용한 대전시 공공도서관 이용자의 인식과 경험 연구 - SNS와 온라인 뉴스 기사를 중심으로 - (A Study on the Perception and Experience of Daejeon Public Library Users Using Text Mining: Focusing on SNS and Online News Articles)

  • 최지원;곽승진
    • 한국문헌정보학회지
    • /
    • 제58권2호
    • /
    • pp.363-384
    • /
    • 2024
  • 본 연구는 텍스트마이닝 기법을 중심으로 빅데이터 분석을 활용하여 대전시 공공도서관에 대한 이용자의 인식과 경험을 살펴보고자 수행되었다. 이를 위하여 첫째, 소셜미디어에 나타난 이용후기 데이터를 수집하여 대전시 공공도서관에 대한 이용자들의 전반적인 인식과 평가를 탐색하였다. 둘째, 온라인 뉴스 기사 분석을 통해 사회적으로 논의되고 있는 현안을 파악하였다. 분석 결과, 첫째로 어린이 동반 이용자 비중의 높다는 것과 다음으로 LDA 분석을 통한 토픽이 '문화행사/프로그램', '자료 이용', '물리적 환경 및 시설', '도서관 서비스'의 네 가지 분류로 나타난다는 것, 마지막으로 뉴스기사 데이터에 도서관 및 복합문화공간 추가 건립과 도서관 협력 체계 구축에 대한 키워드가 핵심적으로 등장한다는 것을 확인하였다. 이를 바탕으로 지역 균형을 고려한 공공도서관 건립과 육아 및 보육 기관과의 업무협약을 통한 사회적 육아공동체 네트워크 조성을 제안하였다. 본 연구를 활용하여 대전시 공공도서관의 정책적·사회적 흐름을 알아보고 지역사회 수요를 반영하는 공공도서관 운영을 데이터에 기반하여 실행할 수 있기를 기대한다.

산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로 (A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles)

  • 김원희;권영옥
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.287-316
    • /
    • 2023
  • 최근 전 세계적으로 기업의 환경(Environmental)·사회(Social)·지배구조(Governance)의 비재무적 요소를 고려한 지속가능경영이 필수적으로 요구되면서, 각 기업들은 이에 대응할 수 있는 전략적 방향 수립이 중요해지고 있다. 특히 기업이 속한 산업별로 상이한 ESG 이슈에 대한 이해를 바탕으로 산업과 개별 기업의 특성을 반영한 전략을 개발하고 추진할 수 있어야 할 것이다. 이에 본 연구에서는 금융, 제조, IT 분야별로 나누어 주요 국내 기업들의 ESG 보고서와 관련 뉴스 기사를 이용하여 산업별 ESG 동향과 활동을 비교 분석하였다. 키워드 빈도분석과 토픽 모델링을 활용한 분석 결과, 국내 ESG 선도 기업들의 지속가능경영 활동에서의 산업별 차이를 도출 할 수 있다. 금융 분야에서는 '고객 중심 경영'과 '기후 변화 대응', 제조 분야에서는 '지속가능한 공급망 관리'와 '탄소중립', IT 분야에서는 '기술혁신'과 '디지털 책임'이 강조되었다. ESG 요소별 우선 순위가 높은 활동의 예를 들면, 환경 측면에서는 '에너지 절감과 친환경 활동', 사회 측면에서는 '사회공헌과 상생', 지배구조 측면에서는 '이사회 독립성 강화와 리스크 관리' 등으로 나타났다. 더 나아가 산업별 각 ESG 요소의 핵심 이슈 뿐 아니라 ESG 보고서와 뉴스 기사의 내용 유사성 및 차별점도 확인하였다. 연구의 결과는 산업별 동향을 고려한 ESG 경영 전략 및 정책의 방향성을 제시하고 있으며 이는 산업별 ESG 평가체계 수립에도 도움이 될 것으로 기대한다.

트위터 오피니언 마이닝을 통한 코로나19 기간 대학 비대면 수업에 대한 의견 고찰 (Exploring Opinions on University Online Classes During the COVID-19 Pandemic Through Twitter Opinion Mining)

  • 김동훈;강정;주영준
    • 한국문헌정보학회지
    • /
    • 제55권4호
    • /
    • pp.5-22
    • /
    • 2021
  • 본 연구는 코로나바이러스감염증-19 (이하 코로나19) 확산 이후 대학의 부분 또는 전면 비대면 수업으로의 전환에 대해 소셜 미디어 플랫폼 중 하나인 트위터에서 이를 어떻게 생각하고 논의하고 있는지를 파악하기 위해 진행되었다. 이를 위해 트위터에서 비대면 수업 관련 트윗을 수집한 후 감성분석 및 시계열 주제 분석을 실시하였다. 감성분석결과, 전반적으로 긍정적인 여론보다 부정적인 여론이 많았지만 시간이 지남에 따라 점차 부정적인 여론이 줄어드는 경향이 나타남을 확인하였다. 또한 월별 감성점수분포를 통해 학기 중이 방학기간보다 감성점수 분포의 폭이 넓음을 확인하였고, 이를 통해 학기 중일 때가 방학 때보다 비대면 수업에 대해 더 다양한 감정과 의견을 교환한다는 사실을 확인할 수 있었다. 다음으로 긍정트윗과 부정트윗을 구분하여 시계열 주제 분석을 실시한 결과, 긍정트윗에서는 수업환경 및 장비, 긍정적인 감정 표현, 강의시청장소, 언어수업, 시험 및 과제와 같은 다섯 가지 주요한 주제가 나타났으며, 부정트윗에서는 시간(수업시간, 쉬는시간), 시험 및 과제, 부정적인 감정 표현, 수업환경 및 장비와 같은 네 가지 주요한 주제가 나타남을 확인하였다. 또한 각 주제별 대표 키워드들의 비율을 통해 시간에 따른 주제의 변화를 파악함으로써 비대면 수업에 대한 여론의 트렌드를 살펴 보고자 하였다. 본 연구는 기존 비대면 수업 관련 연구들과는 달리 소셜 미디어 중 하나인 트위터를 활용하여 국내 대학의 비대면 수업에 대한 전반적인 의견을 파악하고자 하였으며, 감성분석과 시계열 주제 분석을 활용하여 비대면 수업에 대한 긍부정 여론을 나누어 식별 및 시간의 흐름에 따른 트렌드의 변화를 파악하였다는 점에서 학문적 함의를 지닌다. 또한 연구결과는 국내 대학에서의 비대면 수업에 대한 구성 및 개선방안 등에 활용될 수 있으며, 비대면 수업을 설계하는 대학 및 교수자들에게 도움이 될 수 있다는 점에서 실질적인 함의를 지닌다.

Crunchbase를 바탕으로 한 Generative AI 영향 분석: ChatGPT 등장 전·후를 중심으로 (Analysis of the Impact of Generative AI based on Crunchbase: Before and After the Emergence of ChatGPT)

  • 김나윤;금영정
    • 벤처창업연구
    • /
    • 제19권3호
    • /
    • pp.53-68
    • /
    • 2024
  • Generative AI는 전 세계적으로 많은 관심을 받고 있으며, 이를 비즈니스 환경에서 효과적으로 활용하기 위한 방안이 모색되고 있다. 특히 OpenAI사에서 개발한 Large Language Model인 GPT-3.5 모델을 적용한 ChatGPT 서비스의 대중 공개 이후 더욱 주목받으며 전반적인 산업 분야에 큰 영향을 미치고 있다. 이 연구는 Generative AI, 특히 그 중에서도 OpenAI사의 GPT-3.5 모델을 적용한 ChatGPT의 등장에 초점을 맞춰 스타트업 업계에 미치는 영향을 조사하고 등장 이전과 이후에 일어난 변화를 비교하였다. 본 연구는 스타트업 업계에서 Generative AI가 어떻게 활용되고 있는지를 상세히 조사하고 ChatGPT의 등장이 업계에 미친 영향을 분석함으로써 비즈니스 환경에서 Generative AI의 실제 적용과 영향력을 밝히는 것을 목표로 한다. 이를 위해 ChatGPT 발표 전후에 등장한 Generative AI 관련 스타트업의 기업 정보를 수집하여 산업군, 사업 내용, 투자 정보 등의 변화를 분석하였다. 키워드 분석, 토픽 모델링, 네트워크 분석을 통해 스타트업 업계의 동향과 Generative AI의 도입이 스타트업 업계에 어떤 혁신을 가져왔는지 파악하였다. 연구 결과, ChatGPT의 등장 이후 Generative AI 관련 스타트업의 창업이 증가한 것을 알 수 있었으며 특히 Generative AI 관련 스타트업의 자금 조달 총액과 평균 금액이 크게 증가한 것을 확인할 수 있었다. 또한, 다양한 산업군에서 Generative AI 기술을 적용하고자 하는 시도를 보이고 이를 활용한 기업용 애플리케이션, SaaS 등 서비스와 제품의 개발이 활발해지며 새로운 비즈니스 모델의 등장에 영향을 미치고 있음을 확인하였다. 본 연구 결과를 통해 Generative AI가 스타트업 업계에 미치는 영향을 확인하였으며, 이러한 혁신적인 신기술의 등장이 비즈니스 생태계에 어떠한 변화를 가져다 줄 수 있는 지 이해하는데 이바지할 수 있다.

  • PDF