• Title/Summary/Keyword: 토픽 분할

Search Result 11, Processing Time 0.02 seconds

Topic maps Matching and Merging Techniques based on Partitioning of Topics (토픽 분할에 의한 토픽맵 매칭 및 통합 기법)

  • Kim, Jung-Min;Chung, Hyun-Sook
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.819-828
    • /
    • 2007
  • In this paper, we propose a topic maps matching and merging approach based on the syntactic or semantic characteristics and constraints of the topic maps. Previous schema matching approaches have been developed to enhance effectiveness and generality of matching techniques. However they are inefficient because the approaches should transform input ontologies into graphs and take into account all the nodes and edges of the graphs, which ended up requiring a great amount of processing time. Now, standard languages for developing ontologies are RDF/OWL and Topic Maps. In this paper, we propose an enhanced version of matching and merging technique based on topic partitioning, several matching operations and merging conflict detection.

Topic Model Augmentation and Extension Method using LDA and BERTopic (LDA와 BERTopic을 이용한 토픽모델링의 증강과 확장 기법 연구)

  • Kim, SeonWook;Yang, Kiduk
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.99-132
    • /
    • 2022
  • The purpose of this study is to propose AET (Augmented and Extended Topics), a novel method of synthesizing both LDA and BERTopic results, and to analyze the recently published LIS articles as an experimental approach. To achieve the purpose of this study, 55,442 abstracts from 85 LIS journals within the WoS database, which spans from January 2001 to October 2021, were analyzed. AET first constructs a WORD2VEC-based cosine similarity matrix between LDA and BERTopic results, extracts AT (Augmented Topics) by repeating the matrix reordering and segmentation procedures as long as their semantic relations are still valid, and finally determines ET (Extended Topics) by removing any LDA related residual subtopics from the matrix and ordering the rest of them by F1 (BERTopic topic size rank, Inverse cosine similarity rank). AET, by comparing with the baseline LDA result, shows that AT has effectively concretized the original LDA topic model and ET has discovered new meaningful topics that LDA didn't. When it comes to the qualitative performance evaluation, AT performs better than LDA while ET shows similar performances except in a few cases.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

Topographic Non-negative Matrix Factorization for Topic Visualization from Text Documents (Topographic non-negative matrix factorization에 기반한 텍스트 문서로부터의 토픽 가시화)

  • Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.324-329
    • /
    • 2006
  • Non-negative matrix factorization(NMF) 기법은 음이 아닌 값으로 구성된 데이터를 두 종류의 양의 행렬의 곱의 형식으로 분할하는 데이터 분석기법으로서, 텍스트마이닝, 바이오인포매틱스, 멀티미디어 데이터 분석 등에 활용되었다. 본 연구에서는 기본 NMF 기법에 기반하여 텍스트 문서로부터 토픽을 추출하고 동시에 이를 가시적으로 도시하기 위한 Topographic NMF (TNMF) 기법을 제안한다. TNMF에 의한 토픽 가시화는 데이터를 전체적인 관점에서 보다 직관적으로 파악하는데 도움이 될 수 있다. TNMF는 생성모델 관점에서 볼 때, 2개의 은닉층을 갖는 계층적 모델로 표현할 수 있으며, 상위 은닉층에서 하위 은닉층으로의 연결은 토픽공간상에서 토픽간의 전이확률 또는 이웃함수를 정의한다. TNMF에서의 학습은 전이확률값의 연속적 스케줄링 과정 속에서 반복적 파리미터 갱신 과정을 통해 학습이 이루어지는데, 파라미터 갱신은 기본 NMF 기반 학습 과정으로부터 유사한 형태로 유도될 수 있음을 보인다. 추가적으로 Probabilistic LSA에 기초한 토픽 가시화 기법 및 희소(sparse)한 해(解) 도출을 목적으로 한 non-smooth NMF 기법과의 연관성을 분석, 제시한다. NIPS 학회 논문 데이터에 대한 실험을 통해 제안된 방법론이 문서 내에 내재된 토픽들을 효과적으로 가시화 할 수 있음을 제시한다.

  • PDF

A Study on Graph-based Topic Extraction from Microblogs (마이크로블로그를 통한 그래프 기반의 토픽 추출에 관한 연구)

  • Choi, Don-Jung;Lee, Sung-Woo;Kim, Jae-Kwang;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.564-568
    • /
    • 2011
  • Microblogs became popular information delivery ways due to the spread of smart phones. They have the characteristic of reflecting the interests of users more quickly than other medium. Particularly, in case of the subject which attracts many users, microblogs can supply rich information originated from various information sources. Nevertheless, it has been considered as a hard problem to obtain useful information from microblogs because too much noises are in them. So far, various methods are proposed to extract and track some subjects from particular documents, yet these methods do not work effectively in case of microblogs which consist of short phrases. In this paper, we propose a graph-based topic extraction and partitioning method to understand interests of users about a certain keyword. The proposed method contains the process of generating a keyword graph using the co-occurrences of terms in the microblogs, and the process of splitting the graph by using a network partitioning method. When we applied the proposed method on some keywords. our method shows good performance for finding a topic about the keyword and partitioning the topic into sub-topics.

효소정련이 염색에 미치는 영향

  • 김주혜;최은경;김수연;이현경
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2003.04a
    • /
    • pp.72-77
    • /
    • 2003
  • 섬유산업에의 효소의 이용은 최근 들어 급속히 증가하고 있는 추세이다. 염색폐수의 처리 및 각종 섬유처리에의 효소의 이용만을 다루는 학회(Biotechnology in the Textile Industry)가 전 세계에서 모여든 학자들로 2회째 성황을 이루었으며, 섬유학회중 가장 인지도가 높은 AATCC 학회에는 이 분야의 토픽만을 모아서 발표하는 분과를 개설한 것이 이 사실을 뒷받침한다. (중략)

  • PDF

Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm (점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상)

  • Chang, Jeong-Ho;Lee, Jong-Woo;Eom, Jae-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1045-1055
    • /
    • 2007
  • Latent topic models are statistical models which automatically captures salient patterns or correlation among features underlying a data collection in a probabilistic way. They are gaining an increased popularity as an effective tool in the application of automatic semantic feature extraction from text corpus, multimedia data analysis including image data, and bioinformatics. Among the important issues for the effectiveness in the application of latent topic models to the massive data set is the efficient learning of the model. The paper proposes an accelerated learning technique for PLSA model, one of the popular latent topic models, by an incremental EM algorithm instead of conventional EM algorithm. The incremental EM algorithm can be characterized by the employment of a series of partial E-steps that are performed on the corresponding subsets of the entire data collection, unlike in the conventional EM algorithm where one batch E-step is done for the whole data set. By the replacement of a single batch E-M step with a series of partial E-steps and M-steps, the inference result for the previous data subset can be directly reflected to the next inference process, which can enhance the learning speed for the entire data set. The algorithm is advantageous also in that it is guaranteed to converge to a local maximum solution and can be easily implemented just with slight modification of the existing algorithm based on the conventional EM. We present the basic application of the incremental EM algorithm to the learning of PLSA and empirically evaluate the acceleration performance with several possible data partitioning methods for the practical application. The experimental results on a real-world news data set show that the proposed approach can accomplish a meaningful enhancement of the convergence rate in the learning of latent topic model. Additionally, we present an interesting result which supports a possible synergistic effect of the combination of incremental EM algorithm with parallel computing.

Abbreviation Disambiguation using Topic Modeling (토픽모델링을 이용한 약어 중의성 해소)

  • Woon-Kyo Lee;Ja-Hee Kim;Junki Yang
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • In recent, there are many research cases that analyze trends or research trends with text analysis. When collecting documents by searching for keywords in abbreviations for data analysis, it is necessary to disambiguate abbreviations. In many studies, documents are classified by hand-work reading the data one by one to find the data necessary for the study. Most of the studies to disambiguate abbreviations are studies that clarify the meaning of words and use supervised learning. The previous method to disambiguate abbreviation is not suitable for classification studies of documents looking for research data from abbreviation search documents, and related studies are also insufficient. This paper proposes a method of semi-automatically classifying documents collected by abbreviations by going topic modeling with Non-Negative Matrix Factorization, an unsupervised learning method, in the data pre-processing step. To verify the proposed method, papers were collected from academic DB with the abbreviation 'MSA'. The proposed method found 316 papers related to Micro Services Architecture in 1,401 papers. The document classification accuracy of the proposed method was measured at 92.36%. It is expected that the proposed method can reduce the researcher's time and cost due to hand work.

Feature Expansion based on LDA Word Distribution for Performance Improvement of Informal Document Classification (비격식 문서 분류 성능 개선을 위한 LDA 단어 분포 기반의 자질 확장)

  • Lee, Hokyung;Yang, Seon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1008-1014
    • /
    • 2016
  • Data such as Twitter, Facebook, and customer reviews belong to the informal document group, whereas, newspapers that have grammar correction step belong to the formal document group. Finding consistent rules or patterns in informal documents is difficult, as compared to formal documents. Hence, there is a need for additional approaches to improve informal document analysis. In this study, we classified Twitter data, a representative informal document, into ten categories. To improve performance, we revised and expanded features based on LDA(Latent Dirichlet allocation) word distribution. Using LDA top-ranked words, the other words were separated or bundled, and the feature set was thus expanded repeatedly. Finally, we conducted document classification with the expanded features. Experimental results indicated that the proposed method improved the micro-averaged F1-score of 7.11%p, as compared to the results before the feature expansion step.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.