• Title/Summary/Keyword: 토층 변화

Search Result 130, Processing Time 0.03 seconds

Changes of Distribution of Vascular Hydrophytes in the Nakdong River Estuary and Growth Dynamics of Schenoplectus triqueter, Waterfowl Food Plant (낙동강 하구의 수생관속식물의 분포 변화와 수금류(고니류)의 먹이식물인 세모고랭이의 성장 변화)

  • Kim, Gu-Yeon;Lee, Chan-Woo;Yoon, Hae-Soon;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.335-345
    • /
    • 2005
  • A study on changes on the distribution of vascular hydrophytes and the growth pattern of Schenoplectus triqueter (Scirpus triqueter) was undertaken at the Nakdong River estuary from 2002 to 2004. The change was due to physical alteration of the estuary for the past 25 years. These plant species are the major food sources for winter waterfowl. A total of 32 species of vascular hydrophytes from 17 families were found in the West Nakdong River (freshwater), the main channel of Nakdong River (freshwater) and the Nakdong River Estuary (brackish water). After the construction of the barrage on the estuary in 1987, the number of hydrophytes has remarkably increased to 17 species (5 species in 1985) in the main channel of the River. In particular, a community of Eurale ferox was found at the backwater wetland of the Daejeo side of the main channel. The introduced species of Eichhornia crassipes and Pistia stratiotes that were epidemic in 2001 at West Nakdong River was not found any more. The other species such as Nymphoides indica, Myriophyllum spicatum, Ruppia spp. were rediscovered. The large area (about 1,300ha) of Zostera spp. was the main sources of food for swans, but disappeared because of direct and indirect impacts of reclamation in the River estuary. Currently, there remains a small patch of Zostera spp. and about 250ha of S. triqueter. Schenoplectus triqueter grew mostly between April-September and tuber formed, between September-October. The growth of S. triqueter up to $60\sim80cm$ in length was observed in 5 sites out of the 7 sites in brackish area. Tubers of S. triqueter were eaten by waterfowls such as swans as winter food. In five sites, tubers took $44\sim57%$ of total biomass in October. Tubers were found in deep layers; $5\sim15cm$ (9%), $15\sim25cm$ (28%), $25\sim40cm$ (55%), below 40cm $(6\sim7%)$. The distribution of vascular hydrophytes has remarkably changed in the Nakdong River Estuary due to the reclamation of the area. In order to determine the extent of changes of the distribution of these plants and the carrying capacity of the area for waterfowl, an intensive research is urgently needed.

Dynamics of $NO_3^{-}$-N in Barley Rhizosphere and Optimum Rate of Nitrogen Top- Dressing Based on $N_{min}$ Soil Test (실초태 실소 의 보리 근권토양내 동적 변화와 $N_{min}$ 토양진단법에 의한 과정 실소추식량 결정)

  • 손상목;큐케마틴;한인아
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.185-194
    • /
    • 1995
  • The prevention of excessive use of nitrogen fertilizer get an attention in Korea not only for minimizing $NO_3^-$ contamination of groundwater but also for establishment of environmental friendly sustainable agriculture. In order to find out the dynamics of $NO_3^-$ in barley rhizosphere and its suitability for nitrogen fertilization strategies and for environmental control, the accumulation of $NO_3^-$ in 3 layer, 0~30cm, 30~60cm, 60~90cm of soil profile has been detected in winter barley pro-duction system. It showed the recommended N fertilization rate for winter barley cause the $NO_3^-$ contamination of groundwater through $NO_3^-$ leaching during winter. The $NO_3^-$ content of 0~90cm soil depth have directly reflected the amount of basal N fertilization in the early spring, but not 0~30cm and 0~60cm soil depth. The contents of $NO_3^-$ measured to 0~30cm, 0~60cm soil depth were not significanly correlated with yield but the contents of $NO_3^-$ measured to 90cm soil depth was highly correlated with yield. Nitrogen fertilizer requirement could be estimated accurately by soil test and it provides field specific N rate recommendation for spring N application to winter barley. It was concluded that $N_{min}$ method could be applied to korean climatic and soil condition for optimal fertilizer application rate.

  • PDF

Geoscientific land management planning in salt-affected areas* (염기화된 지역에서의 지구과학적 토지 관리 계획)

  • Abbott, Simon;Chadwick, David;Street, Greg
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.98-109
    • /
    • 2007
  • Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.

Effect of Cornstarch-Based Absorbent Polymer on the Growth of Cool Season Turfgrasses in Sand-Based Mixture (옥수수 전분이 주성분인 토양보습제 첨가가 모래 배양토에서 한지형 잔디의 생육에 미치는 영향)

  • Choi, Joon-Soo;Yang, Geun-Mo;Ahn, Sang-Hyun;Cho, Yun-Sik
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2008
  • This study was carried out to examine the effects of cornstarch-based absorbent polymer (CAP) on the growth of cool season turfgrasses in sand-based soil mixture. Kentucky bluegrass + perennial ryegrass mixtures seeded at May 18 in 2006 on sand-based soil mixture. Sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixtures were compared. Ground coverage of sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) treatments showed 50% at a month after seeding. But the coverage of sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ resulted in 36.7%. Mixing of CAP with sand was considered to be efficient method for increasing ground coverage as much as peat. Dry weight of turfgrass tiller at sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) were also significantly higher than sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ mixtures at a month after seeding. Soil water retention at the sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixing were lower than sand + peat (5%, v/v) and sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v) during the dry periods. From the results, the mixing of CAP with sand is useful to increased ground coverage of kentucky bluegrass and perennial ryegrass.

Studies on the soil - erosion- control effect of underground growth of several grasses used to rodside vegetation (도로비탈면 녹화에 사용되는 주요 초목식물의 지하부 생육이 토양안정에 미치는 효과에 관한 연구)

  • 김남춘
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.45-55
    • /
    • 1990
  • This study describes on the erosion control effects of the several grasses and its mixtures for the man-made slopes. The grasses used for this experiment include cool-season grasses such as Festuca rubra L. (Creeping redfescue), Poa pratensis L. (Kentucky bluegrass), Lolium perenne L. (Perenial ryegrass), Lolium multiflorum LAM. (Italian ryegrass), Festuca arundinacea Schrel. (Tall fescue), and warm-season grasses such as Eragrostis curvula Schrad. (Weeping lovegrass), Zoysia japonica Steud. (Zoysiass) and native plants (Artemisia princeps var. orientalis Hara, Lespedeza cuneata G. Don, Arundinella hirta var. ciliata K.) This study was conducted at Dan-kook University from April, 1988 to Octover, 1989. The results are summurized as follows; 1.Cool-season grasses covered the ground quickly in early stage, and weekened slowly during sumer season. Warm-season grasses and native-plants covered the ground slowly in early stage, but during summer season they grew vigorously, so outweighed cool season grasses. 2. The amount of aboveground growth of weeping locearass and underground growth of Artemisia prinoepts are quite differant from others. Since Arumdinella hirta has deep root system, it is thought to very useful protection of unstable for hrdro-seeding. Because cool-season grasses are useful for quick coverage, and native plants or warm-season grow well during summer season with the better compatability to weeds. 3.Mixture III(cool-season and warm-season grasses), mixtureIV(native spp. and Italian ruegrass), and mixtureV(native spp.) resulted in better control of erosion control on man-made slopes. Native spp. has equivallent capacity of erosion control compared to several foreign grasses.

  • PDF

A Study on the Forest Ecology in Young-il Soil Erosion Control District (영일사방사업지(迎日砂防事業地)의 삼림생태학적(森林生態學的) 연구(硏究))

  • Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.41-47
    • /
    • 1982
  • The large devastated land in Young-il district, Gyeongsangbusdo, had been existed for a long time, and the Korean government had invested 3.8 billion won to control soil erosion of the area for 5 years from 1973 to 1977. This research was to investigate the changes of the soil profile and vegetation structure in the 3rd, 6th and 9th years since soil erosion control had implemented. The results obtained in this study are as follows: 1) The thickness of the litter layer (L), the fermentation layer(F), the humified layer(H) and the surface soil layer(S) increased with increasing years after implements soil erosion control project had started. 2) The H layer was not showed for the three years since the project had implemented but was in the sixty year. 3) The soil chemical elements including the organic matter and total nitrogen increased with increasing years after the project had started, the amounts of organic matter and total nitrogen were three and seven times higher respectively in the nineth year after project had started. The amounts of organic matter and total nitrogen were three and seven times higher, respectively in the nineth year after project started than those before. 4) Among the grasses and trees which had been sowed or planted during project period, the summed domination ratios for arundinella hirta var ciliare. Themeda japonica, Cymbopogen goeringi and Lespedeza bicolor decreased rapidly, while those for Robinia pesudoacacia and Pinus densiflora increased with increasing years after the project started. 5) The appearance of Quercus seedlings suited to this area and Pinus densiflora seedling which is a subclimax species increased with increasing years after the project started.

  • PDF

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF

No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System (두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화)

  • Yang, Seung-Koo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.699-717
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the growth of pepper plant and physical properties of soil under green house condition. 1. Degree of crack on soil by tillage and no-tillage Soil cracks found in ridge and not found in row. At five months of tillage, crack number and crack length in length ridge were 3 and 37~51 cm in tillage. Maximum width and maximum depth in length ridge were 30 mm and 15.3cm in tillage. Crack number and crack length in width ridge were 7.5 and 7~28 cm in tillage. Maximum width and maximum depth in width ridge were 29 mm and 15.3 cm in tillage. At a year of no-tillage, crack number and crack length in length ridge were 1.0 and 140~200 cm in tillage. Maximum width and maximum depth in length ridge were 18 mm and 30 cm in a year of no-tillage. Crack number and crack length in width ridge were 11 and 6~22 cm in a year of no-tillage. Maximum width and maximum depth in width ridge were 22 mm and 18.5 cm in a year of no-tillage. Soil crack was not found at 2 years of no-tillage in sandy Jungdong series (jd) soil. Soil crack was found at 7 years of no-tillage in clayish Jisan series (ji) soil. 2. Penetration resistance on soil Penetration resistance was increased significantly at no-tillage in Jungdong series (jd). Depth of cultivation layer was extended at no-tillage soil compared with tillage soil. Penetration resistance of plow pan was decreased at 1 year of no-tillage compared with than tillage soil. Penetration resistance was linearly increased with increasing soil depth at tillage in Jisan series (ji). Penetration resistance on top soil was remarkably increased and then maintained continuously at no-tillage soil. 3. Drainage and moisture content of soil Moisture content of ridge in top soil was not significant difference at both tillage and no-tillage. Moisture content of ridge in 20 cm soil was 14% at no-tillage soil and 25% at tillage soil. 4. Change of capacity to retain water in soil Capacity to retain water in top soil was not significant difference at 1 bar both tillage and no-tillage. Capacity to retain water in soil was slightly higher tendency in 1 year and 2 years of no-tillage soil than tillage soil. Capacity to retain water in soil was increased at 15 bar both tillage and no-tillage. Capacity to retain water in subsoil was slightly higher tendency at 1 bar and 3 bar in 2 years of no-tillage than tillage soil and a year of no-tillage soil.

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

The Effects of Nitrogen Type and Fertilized Depth on Leaching and Absorption of Nitrogen in Paddy Soil and Growth and Yields of Rice (질소비료(窒素肥料)의 형태(形態)와 시용심도(施用深度)가 질소(窒素)의 용탈흡수(溶脫吸收) 및 수도(水滔) 생육수량(生育收量)에 미치는 영향(影響))

  • Maeng, D.W.;Cho, C.Y.;Lee, D.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.43-60
    • /
    • 1968
  • In order to find the effects of nitrogen type (ammonium sulfate and urea fertilizer) and fertilized depth, (0~10cm, 0cm, 5~10cm, 10~15cm, 15~20cm, and 20cm below) on leaching and absorption of nitrogen in paddy soil, and growth and yields of rice, the pot culture experiment was carried out, using the variety Jaekun, one of the Korean leading variety. Experimental results were Summarized as follows: 1. No variations of the pH of percolating water were induced by the differences of nitrogen types and their fertilized depth (Table. 2). 2. The leaching of nitrogen was less in ammonium sulfate and top soil fertilizing plots than in urea and subsoil fertilizing plot, and the growth of rice in early stage was more promoted in ammonium sulfate and topsoil fertilizing plots (Table. 1, 7 and 8). 3. Leachng of nitrogen through the percolating water almost came to an end at the most numerous tiller stage (Table 1). 4. The absorption of nitrogen of each part of the rice plant in the harvesting stage correlated closely with the yields of each part (Table 5, 6, 9 and 10) and the leaching of nitrogen in the early stage was inversely proportion to the absorption of nitrogen of rice plant in the harvesting time (Table 1, 5, 6, 9 and 10). 5. The number of spikes was more numerous in ammonium sulfate plots than in urea plots on an average, so that the yields were higher in the ammonium sulfate plots than in urea plots although no differences in the grain number per spike were found in above two plots. The number of spikes was more numerous in topsoil fertilizing plots than in subsoil fertilizing plots, but the grain number per spike was less in former than in latter, so that no difference in yields was found. The absorption of nitrogen correlated closely with the yields in complete paddy grains (Table 5, 9, and 10). 6. At the ammonium sulfate fertilizing plots, the number of spikes was more numerous in topsoil fertilizing plots than in subsoil fertilizing plots, (among the each of the topsoil plots, 0~10cm and 5~10cm fertilizing plots kept more spikes than the 0cm fertilizing plots), but the grain number per spike was less in former than in latter (among the each of topsoil plots, no differences were found), so that no significant difference in yields was showed between the topsoil and subsoil fertilizing plots, but the results showed the tendency that the yields were highest in 0~10cm plots and the lowest in 20cm below plots. At the urea fertilizing plots, the number of spikes decreased in proportion to the increasing of fertilized depth, but no variations were found in the grain number per spike, so that the yields decreased in proportion to the increasing of fertilized depth. The absorption of nitrogen correlated closely with the yields in complete paddy grains (Table 5, 6, 9, and 10). 7. When fertilized in topsoil, the number of spikes was more numerous in ammonium sulfate plot than in urea plot, but the grain number per spike variated reversely, so that no differences were found in the yields between the ammonium sulfate and the urea plots, when fertilized in subsoil, both the number of spikes and the grain number per spike were larger in ammonium sulfate than in urea plot, so that the yields were also higher in ammonium sulfate plots (Table 5, 6, 9 and 10). 8. The weight of straw and its nitrogen absorption were higher in ammonium sulfate plot than in urea plot and decreased in proportion to the increasing of fertilized depth. Among the each of topsoil fertilizing plots, the 0~10cm and the 5~10cm fertilizing plots excelled the 0cm plot (Table 5, 6, 9 and 10). 9. No significant variations in the fertilizer treatments were found in the characters of heading date, maturing date, length of culm, length of spike, weight of empty grain, 1,000 grain weight, and one liter weight.

  • PDF