• Title/Summary/Keyword: 토지분류

Search Result 672, Processing Time 0.021 seconds

A New Perspectives on the Research of Domestic and Overseas Land Category System (국내외 지목체계 운용실태 연구에 관한 새로운 시각)

  • Ryu, Byoung-Chan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.151-167
    • /
    • 2019
  • Korea's current Land Category Classification System(LCCS) can not accurately register of complex and diverse Status of land use in Cadastral Record. Therefore, in order to draw implications for the improvement of LCCS in Korea, Shin SW and four others published a paper titled 'A Study on Land Category System of Domestic and Foreign Country' in 2013. This paper compared the 'land category', 'land use' and 'land cover' of six countries on the same line, and Some non-factual content was described. So, presented a new perspective on this. Looking forward, I hope that reasonable alternative will be presented based on the understanding of LCCS of Germany, Japan and Taiwan. In the future research project, to study the history of LCCS in Germany and Taiwan and suggest to refer to improvement of LCCS of Korea.

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.

A Study on the Effect of Image Resampling in Land Cover Classification (토지피복분류에 있어서 이미지재배열의 영향에 관한 연구)

  • Yang, In-Tae;Kim, Yeon-Jun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.181-192
    • /
    • 1993
  • Image is composed of the digital numbers including information on natural phenomena, their condition and the kind of objects. Digital numbers change in geometric correction(that is preprocessing). This change of digital numbers gave an effect on results of land-cover classification. We intend to know the influence of resampling as classifying land-cover using the image reconstructed by geometric correction in this paper. Chun-cheon basin was selected the study area having most variable land-cover pattern in North-Han river valley and made on use of RESTEC data resampled in preprocessing. Land-cover is classified as six classes of LEVEL I using maximum likelyhood classification method. We classified land-cover using the image resampled by two methods in this study. Bilinear interpolation method was most accurate in five classes except bear-land in the result of comparing each class with topographic map. We should choose the method of resampling according to the class in which we put the importance in the image resampling of geometric correction. And if we use four-season's image, we may classify more accurately in case of the confusion in case of the confusion in borders of rice field and farm.

  • PDF

Accuracy evaluation of domestic and foreign land cover spectral libraries using hyperspectral image (초분광 영상을 활용한 국내외 토지피복 분광 라이브러리 정확도 평가)

  • Park, Geun Ryeol;Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.169-184
    • /
    • 2021
  • Recently, land cover spectral libraries have been widely used in studies to classify land cover based on hyperspectral images. Overseas, various institutions have built and provided land cover spectral libraries, but in Korea, the building and provision of land cover spectral libraries is insufficient. Against this background, the purpose of this study is to suggest the possibility of using domestic and foreign spectral libraries in the classification studies of domestic land cover. Band matching is required for comparative analysis of the spectral libraries and land cover classification using the spectral libraries, and in this study, an automation logic to automatically perform this is presented. In addition, the directly constructed domestic land cover spectral library and the existing overseas land cover spectral library were comparatively analyzed. As a result, the directly constructed land cover spectral library had the highest correlation coefficient of 0.974. Finally, for the accuracy evaluation, aerial hyperspectral images of the study area were supervised and classified using the domestic and foreign land cover spectral libraries using the SAM technique. As a result of the accuracy evaluation, it is judged that Soils, Artificial Materials, and Coatings among the classification items of the foreign land cover spectral library can be sufficiently applied to classify the cover in Korea.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

Quantitative Assessment of Nonpoint Source using the Basin Model (유역모형을 이용한 비점오염원의 정량적 평가)

  • Kwon, Heon-Gak;Kim, Dong-Il;Lee, Jea-Woon;Han, Kun-Yeun;Cheon, Se-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.141-141
    • /
    • 2012
  • 비점오염물질은 강우 시 유출되기 때문에 일간, 계절 간 유출량 변화가 대단히 크게 나타나며, 기후, 지형, 토지이용, 토양 등과 지역적인 특성과 유역 형상에 따라 변화되므로 비점오염원 유출량에 대한 정량화를 위해서는 강우지속시간동안 정확한 수질과 유량에 대한 측정 자료가 요구된다. 따라서 본 연구에서는 비점오염물질에 대해 현장 모니터링 및 현장 실측 관련 기존 연구자료 수집을 통해 중분류 토지피복분류별 원단위를 산정하였다. 또한 특정 유역에 중분류 토지피복 분류별 산정된 원단위를 적용하여 유역기반의 비점오염부하량을 산정 하였다. 대상 유역에 해당하는 하천 말단에서의 실측 자료를 활용하여 유역모형을 구축하고, 강우를 입력 자료로 하여 비점오염 물질별 부하량을 모의 산정하였다. 유역모형으로 HSPF(Hydrologic Simulation Program - Fortran)을 실제 대상유역에 적용하였고, 이에 따른 모의 결과를 실측치와 비교하여 부하량을 산정하였다. 이렇게 모의 산정된 부하량은 실측자료를 기반으로 산정된 원단위의 적용에 따른 부하량과 비교 검토하여 유역에 대한 비점오염원 부하량 산정 시 모형의 적용 가능성을 평가하였다. 본 연구에 적용된 대상유역은 동천유역으로 병성천의 주요 지류로서 유역의 상단에 위치하고 있다. 중분류 토지피복 중 공업지역, 교통지역, 과수원재배지, 비닐하우스재배지, 기타재배지에 대해서는 2008년부터 2010년까지 모니터링을 실시하였고, 이외의 중분류 토지피복에 대한 결과는 수계별 현재까지 진행되고 있는 환경기초조사사업 중 '주요 비점오염원 유출 장기 모니터링'사업의 자료를 활용하였다. 동천유역의 비점오염원 발생부하량을 산정한 결과, BOD 부하량은 대지의 경우 391.4 kg/day로서 중분류 군으로 구분한 결과에 비해 높게 산정되었다. T-N, T-P 발생부하량도 토지피복군이 대분류에서 중분류로 변화됨에 따라 부하량의 차이가 발생 하였다. 또한 동천유역에 대해 구축된 HSPF 모형의 적합도를 시기별 4개의 Case로 구분하여 평가해 보았는데 그 결과, 모형 모의치의 실측치에 대한 적합도가 높게 평가 되었다. 현재 특정 지역에 편중되어 조사되고 있는 중분류 토지피복을 조사 기관간의 교차 조사를 통해 지역적 제한성을 낮추고, 중분류에 속하는 세부피복지점을 확대하여 모니터링 지점의 다양성을 확보하여야 할 것으로 판단된다. 이와 동시에 한시적인 조사가 아닌, 장기간에 걸쳐 연구가 진행 될 경우 원단위에 대한 현재의 불확실성 및 제한성을 줄일 수 있을 것으로 판단되므로, 이러한 기초 자료 확보에 대한 장기적인 투자와 노력이 수반될 시 우리나라에 대표적으로 적용할 수 있는 비점오염원 원단위가 산정될 것으로 생각되며, 이러한 기틀이 마련되어야 비점오염원에 대한 적절한 유역관리방안을 수립할 수 있을 것으로 생각된다.

  • PDF

Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation (신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법)

  • Park, Sang-Young;Ha, Sung-Ryong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.1-4
    • /
    • 2001
  • The classification performance of Artificial Neural Network (ANN) and RBF-NN was compared for Landsat TM image. The RBF-NN was validated for three unique landuse types (e.g. Mixed landuse area, Cultivated area, Urban area), different input band combinations and classification class. The bootstrap resampling technique was employed to estimate the confidence intervals and distribution for unit load, The pollutant generation was varied significantly according to the classification accuracy and percentile unit load applied. Especially in urban area, where mixed landuse is dominant, the difference of estimated pollutant load is largely varied.

  • PDF

Updating Land Cover Maps using Object Segmentation and Past Land Cover Information (객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신)

  • Kwak, Geun-Ho;Park, Soyeon;Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1089-1100
    • /
    • 2017
  • This paper presented a method using past land cover maps in image segmentation and training set collection for updating land cover maps. In this method, the object boundaries in past land cover maps were used for segmenting image clearly. Also, the classes of past land cover maps were used to extract additional informative training set from the initial classification result using a small number of initial training set. To evaluate the applicability of proposed method, a case study for updating land cover maps was carried out using middle-level land cover maps and WorldView-2 image in the Taean-gun, South Korea. As a result of the case study, the confusions between urban and barren, paddy/dry field and grassland in the initial classification result were reduced by adding training set. In addition, the object segmentation using boundaries of past land cover map cleared land cover boundaries and improved classification accuracy. Based on the result of case study, the proposed method using past land cover maps is expected to be useful for updating land cover maps.

고해상도 위성영상과 수치지형도를 이용한 지목불부합의 정도 측정

  • 홍성언;이동헌;박수홍
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.11a
    • /
    • pp.57-64
    • /
    • 2003
  • 필지는 지번, 지목, 경계, 면적이라는 기본적인 구성요소를 가지고 있다. 그 가운데 토지의 가치는 대부분 지목에 의해 결정된다. 때문에 많은 수익이나 산출이 기대되는 용도로 토지를 이용하려는 욕구의 증가로 토지이용의 전환이 많이 이루어지고 있다. 결국, 이것은 토지의 불법형질변경, 난개발 등의 원인이 되고 있고, 지목불부합의 발생을 가중시키고 있다. 그러나 이에 대한 대처나 정리는 상대적으로 미흡한 편이다. 본 연구에서는 고해상도 위성영상과 수치지형도를 이용하여 지목을 기반으로 한 필지별 토지이용/토지피복을 분류할 수 있는 방법을 제안하였다. 그리고, 이렇게 분류된 필지별 토지이용/토지피복도와 편지지적도상의 지목을 비교·분석하여 지목불부합 정도를 통계적으로 측정하였다. 그 결과 연구지역의 불부합 정도에 대한 통계적인 해석이 가능하여, 향후 지적불부합지를 정량적으로 자동 해석할 수 있는 가능성을 제시할 수 있었다.

  • PDF

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.