• Title/Summary/Keyword: 토종닭

Search Result 148, Processing Time 0.029 seconds

한국 재래닭을 보존하는 것은 나의 소명

  • 대한양계협회
    • KOREAN POULTRY JOURNAL
    • /
    • v.36 no.5 s.415
    • /
    • pp.93-97
    • /
    • 2004
  • 1960년대까지만 해도 국내 어디에서든지 쉽게 찾아 볼 수 있었던 우리나라 고유의 재래닭들이 산업화, 현대화에 밀려 자취를 감추고 있다. 지난 1990년대 초에는 전국에서 재래닭을 사육하고 있는 250여 농가가 모인 가운데 우리 한국의 재래닭을 보존하고, 고유의 맛을 국민들에게 보급시키고자 재래닭보존연구회가 발족되기도 하였으나, 한국 재래닭이 희귀성은 있으나 경제성은 물론 혈통이 확립되지 않았던 관계로 사육업자들이 $2\~3$년을 주기로 업종 전환을 하였고, 외국으로부터 토착화된 토종닭(재래닭)에 밀려 사양길에 접어들고 있다.

  • PDF

Effects of Stock Density on the Growth Performance, and Meat Quality of Korean Native Chickens (사육밀도가 토종닭 실용계 생산성 및 계육품질에 미치는 영향)

  • Kim, Chan Ho;Kang, Hwan Ku
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The effect of stocking density on the growth and meat quality of native Korean chickens was investigated. A total of 364 one-day-old native Korean chickens were randomly assigned to one of 5 treatments, each of which was replicated 4 times. Five distinct stocking densities-14, 15, 16, 18, and 22 birds/㎡-were compared. The diet was fed ad libitum for 10 weeks. Results indicated that the final body weight, body weight gain, and feed intake were lower (P<0.05) for the 22 birds/㎡ stock density as compared to the other stock densities. There was no significant difference in the feed conversion ratio, proximate analysis (DM, crude protein, crude fat, and crude ash), water-holding capacity, and cooking loss among the different stock densities. These results indicate that increasing the stock density to 22 birds/㎡ elicits some negative effects on the growth performance and meat quality of Korean-native chickens.

Estimation of Genetic Characteristics and Cumulative Power of Discrimination in Korean Native Chicken and Korean Native Commercial Chicken (토종닭 순계와 실용계의 유전적 특성 및 품종식별력 분석)

  • Oh, Jae-Don;Lee, Kun-Woo;Seo, Ok-Suk;Cho, Byung-Wook;Jeon, Gwang-Joo;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1086-1092
    • /
    • 2010
  • To estimate the genetic characteristics and cumulative power of discrimination (CPD) within Korean native commercial chicken, we used a total of 395 genomic DNAs from six breeds population (Korean Native Red chicken: R, Korean Native Yellow chicken: Y, Korean native Commercial Chicken: C, Ogal chicken: S, Hy-Line Brown: H, White Leghorn: W). Genetic diversity indices including mean allele number among loci, unbiased heterozygosity ($h_i$) within locus, effective number of alleles ($N_e$) and polymorphism information content (PIC) as well as the unbiased average heterozygosity (H) among loci in the populations were calculated using the generated allele frequencies by each marker. Frequencies of microsatellites markers were used to estimate heterozygosities and genetic distances. The nearest distance (0.119) was observed between the C and Y strains. The generated unbiased average heterozygosity among loci in each population was integrated to the global formula of CPD and the result demonstrated that the CPD within the six chicken populations was 99.461%.

Genetic Variations of Chicken TYR Gene and Associations with Feather Color of Korean Native Chicken (KNC) (한국 토종닭 모색 변이와 TYR 유전자형 간의 상관관계 분석)

  • Choi, Jin Ae;Lee, Jun-Heon;Jang, Hyun-Jun;Lee, Kyung-Tai;Kim, Tae-Hun;Lee, Hyun-Jeong;Heo, Kang-Nyeong;Kim, Chong-Dae;Han, Jae-Yong;Park, Mi Na
    • Korean Journal of Poultry Science
    • /
    • v.41 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Tyrosinase (TYR) gene is located on chromosome 1 in chicken and it is composed of five exons and four introns. TYR gene is described as a key enzyme in melanin biosynthesis. Most examples of complete albinism in chicken have been due to defects in the tyrosinase gene. The association of feather color and sequence polymorphism in the Tyrosinase (TYR) gene was investigated using Korean Native chicken H breed (H_PL), Korean Native chicken L/W breed(L/W_PL) and 'Woorimatdag' commercial chickens (Woorimatdag_CC). From L_PL and W_PL breed analyses, 4 synonymous SNPs (locus G33A, G116A, C217T and C247T) and 2 SNPs (G838A and G958A) were detected in 4th exon and 4th intron of TYR gene respectively. The genotype frequencies for 6 SNPs were compared between L_PL and W_PL and W_PL represented homozygous SNP types in all the analyzed SNP positions while L_PL displayed various SNP types.

Analysis of Genetic Characteristics and Probability of Individual Discrimination in Korean Indigenous Chicken Brands by Microsatellite Marker (MS 마커를 이용한 토종닭 브랜드의 유전적 특성 및 개체 식별력 분석)

  • Suh, Sangwon;Cho, Chang-Yeon;Kim, Jae-Hwan;Choi, Seong-Bok;Kim, Young-Sin;Kim, Hyun;Seong, Hwan-Hoo;Lim, Hyun-Tae;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Journal of Animal Science and Technology
    • /
    • v.55 no.3
    • /
    • pp.185-194
    • /
    • 2013
  • Microsatellite markers have been a useful genetic tool in determining diversity, relationships and individual discrimination studies of livestock. The level of genetic diversity, relationships among two Korean indigenous chicken brand populations (Woorimatdag: WR, Hanhyup3: HH) as well as two pure populations (White Leghorn: WL, Rhode Island Red: RIR) were analyzed, based on 26 MS markers. A total of 191 distinct alleles were observed across the four chicken populations, and 47 (24.6%) of these alleles were unique to only one population. The mean $H_{Exp}$ and PIC were estimated as 0.667 and 0.630. Nei's $D_A$ genetic distance and factorial correspondence analysis (FCA) showed that the four populations represented four distinct groups. However, the genetic distance between each Korean indigenous chicken brand (WR, HH) and the pure population (WL, RIR) were threefold that among the WR and HH. For the STRUCTURE analyses, the most appropriate number of clusters for modeling the data was determined to be three. The expected probabilities of identity among genotypes of random individuals (PI) were calculated as $1.17{\times}10^{-49}$ (All 26 markers) and $1.14{\times}10^{-15}$, $7.33{\times}10^{-20}$ (9, 12 with the highest PI value, respectively). The results indicated that the brand chicken breed traceability system employing the own highest PI value 9 to 12 markers, and might be applicable to individual identification of Korean indigenous chicken brand.