• Title/Summary/Keyword: 토의방법

Search Result 596, Processing Time 0.028 seconds

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

A Study on the Estimation of Loss Rate of Dredged Fills (준설토의 유실률 평가에 관한 연구)

  • Kim, Hong-Taek;Kim, Seog-Yeol;Kang, In-Kyu;Park, Jae-Eock
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • Volume change of the dredged soils is composed of loss amount of the soil particles flowing over an outflow weir with water and settlements due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with various estimates from the other existing methods.

  • PDF

Confining Effect due to Geosynthetics Wrapping Compacted Soil Specimen (geosynthetics로 보강된 다짐토 공시체의 구속효과)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong;Park, Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.348-355
    • /
    • 2004
  • 본 연구에서는 geosynthetics로 보강된 다짐토의 보강 메카니즘을 파악하기 위한 목적으로 실내시험 및 수치계산 수행하였다. 본 연구에서 고려하는 보강 메카니즘은 전단에 의한 다짐토의 체적 팽창(부의 다일렌탄시)을 geosynthetics에 의해 구속 억제하는 과정에서 생성되는 효과로 생각한다. 먼저, 실내실험을 위한 구제직인 방법으로서, geosynthetics의 보강효과를 정량직으로 파악하기 위하여 사질토를 다짐하여 공시체를 만들어 그 주위에 geosynthetics를 설치하여 전체적으로 압축전단 시험을 실시하였다. 또한, 다짐토의 다짐도를 달리 하고 한 가지 종류만의 geosynthetics를 이용하여, 다짐토와 geosynthetics의 상호작용에 따른 압축력 변화, geosynthetics의 인장력 변화 및 공시체의 파괴 진행상황 등을 살펴보았다. 수치계산에서는 다짐토의 다일렌탄시 특성에 대하여 표현 가능한 탄소성 구성모델을 이용하였다. 또한, 탄소성 구성 모델에서의 항복 이전의 탄성영역의 거동을 묘사하기 위하여 Hashiguchi(1989)가 제안한 subloading surface의 개념을 도입하였고, 유한요소(FEM)해석을 통해 얻어진 결과들을 실내시험의 결과와 비교 분석하였으며, 그 결과 양자 양호한 결과를 얻었다.

  • PDF

A Study on the Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과 관한 연구)

  • Kim, Eun Ra;Iizuka, Atsushi;Kim, You-Seong;Park, Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.5-16
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced compacted soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, occurring from a confinement of the dilative deformation in compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working on the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure for input parameters needed in the elasto-plastic modeling are presented. And to describe the irreversible deformation characteristics of compacted soils during shearing, the subloading yielding surface (Hashiguchi (1989)) to the elasto-plastic modeling is introduced. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.

Numerical Analysis of Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과에 관한 수치계산)

  • Kim, Eun-Ra;Kang, Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, and it occurred from the confinement of the dilative deformation of compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working to the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure of input parameters needed in the elasto-plastic modeling are presented. In this paper, the subloading yielding surface(Hashiguchi(1989)) is introduced to the elasto-plastic modeling which could describe the irreversible deformation characteristics of compacted soils during shearing. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.