• Title/Summary/Keyword: 토양amendment

Search Result 228, Processing Time 0.027 seconds

Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone (제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구)

  • Lee, Min-Hee;Jeon, Ji-Hye
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.

Reduction of Soil Loss from Sloped Agricultural Field by using Hydrated Lime (소석회를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Yu, Chan;Park, Mi Jeong;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • The feasibility of using hydrated lime ($Ca(OH)_2$) was assessed in reducing soil loss in sloped land under field condition. During 6-month monitoring from May to October, amendment of hydrated lime (3%, w/w) to a test plot decreased soil loss by 76% as compared to the unamended plot. However, the growth of natural vegetation was hampered by hydrated lime addition due to pH increase. Hydrated lime can be used as an effective agent to prevent soil loss in sloped land, but additional treatments are needed to preserve vegetation growth, especially in crop fields.

Dynamics of Heavy Metals in Soil Amended with Oyster Shell Meal (굴 패화석시용에 따른 토양 내 중금속 동태 변화)

  • Lee, Ju-Young;Hong, Chang-Oh;Lee, Chang-Hoon;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.358-363
    • /
    • 2005
  • A large amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea, which already created serious environmental problems. Therefore, the study was undertaken to increase the consumption of oyster shell meal as a soil amendment. The effects of oyster shell meal on dynamics of heavy metals and uptake of heavy metals by spring Chinese cabbage were evaluated in silt loam soil (in Gyeongsang National University, Jinju, Gyeongnam-do, Korea), where 0, 4, 8, 12 and 16 Mg $ha^{-1}$ oyster-shell meal fertilizer were added. Lime treatment (2 Mg $ha^{-1}$) was selected as a control. In the results of this study, cabbage yields were increased by increasing levels of oyster-shell meal fertilizer. With increasing levels of oyster-shell meal fertilizer, total heavy metals concentrations were not significant among treatments. However, 0.1N HCl extractable heavy metals concentration was significantly reduced due to increasing of soil pH. A lot of portion (ca. $80{\sim}90%$) heavy metals fraction of all fractions was residual phase in soil after harvesting. The contents of Cu, Mo, Zn in cabbage were slightly increased by increasing levels of oyster shell meal fertilizer. However, there were no toxic symptoms of heavy metals during cultivation. Conclusively, it was estimated that oyster shell fertilizer could be a good amendment to increase productivity of crop and reduce uptake of heavy metals by crop and mobility of heavy metals in soil.

Studies on Degradation of Butachlor and Nitrofen in Different Soil Conditions (토양중(土壤中) Butachlor 와 Nitrofen의 분해(分解)에 관(關)한 연구(硏究))

  • Oh, Byung-Youl;Jeong, Young-Ho;Lee, Byung-Moo
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.112-119
    • /
    • 1981
  • The persistence of preemergence herbicides, butachlor [2-chloro-2,6-diethyl-N(butoxymethyl) acetanilide] and nitrofen(2,4-dichlorophenyl-4-nitrophenyl ether), at 10 ppm level in different soil conditions amended with organic matter and lime was studied under flooded and field moisture capacity. The microbial breakdown played a major role in the dissipation of the herbicides in soil. Nitrofen degradation in flooded soil was greatly accelerated, while it was slowed down in field moisture capacity as compared with butachlor. Increased amendment of rice straw to the soil shortened the half-life of butachlor under flooded condition, however it prolonged that of butachlor when the amendment was exceeded over 1% on dry weight basis. Liming the soil stimulated decomposition of the herbicides in the soil systems, which ap pears to be pH independent.

  • PDF

Effect of Rootzone Mixes Amended with Crumb Rubber on the Physical Properties (폐 타이어 고무칩을 혼합한 개량제의 물리성 개선 효과)

  • Chong, She-Kong;Ok, Chang-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2006
  • This research was initiated to enhance the tilth of fine-textured soil for turf growth by incorporation of crumb rubber shredded from used tires. A specific objective was to determine the physical properties of soil mixes amended with different grade and amount of crumb rubber in soils. Two soils and three different grades(3.5, 6.5 and 9.5 mm) of crumb rubber were used. The soils selected were an Arenzville silt loam(coarse-silty, mixed, nonacid, mesic Typic Udifluvents) and a Hosmer silty clay loam(fine-silty, mixed, mesic Typic Fragiudalfs). The amount of crumb rubber mixed in soil ranged from 0 to 0.4 $g{\cdot}g^{-1}$(using 0.05 $g{\cdot}g^{-1}$) increments and 0 as a control. For each treatment, soil cores were constructed following the recommendation by the United States Golf Association Green Section Record. Results indicated that porosity of the mixes decreased as the amount of crumb rubber increased. Regardless of the grade of crumb rubber, mixes with less than 0.15 $g{\cdot}g^{-1}$ of crumb rubber in fine-textured soil could not enhance their macro-porosity and hydraulic conductivity. However, as the amendment increased over 0.15 $g{\cdot}g^{-1}$, the tilth of the mixes had improved significantly macro-porosity, hydraulic conductivity and air permeability, as compared with a control.

Effect of Gypsum Application on Reducing Methane (CH4) Emission in a Reclaimed Coastal Paddy Soil (간척지 논 토양 개량제로서 석고처리가 메탄 배출량 저감에 미치는 영향)

  • Lim, Chang-Hyun;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2011
  • BACKGROUND: Gypsum($CaSO_4{\cdot}2H_2O$) is known as an ideal amendment to improve soil quality of the reclaimed coastal land. Since gypsum has very high concentration of electron acceptor like ${SO_4}^{2-}$, its application might be effective on reducing $CH_4$ emission during rice cultivation, but its effect has not been studied well. METHODS AND RESULTS: The effect of gypsum on $CH_4$ emission and rice growth characteristics was studied by pot test, which was packed by reclaimed paddy soils collected from Galsa, Hadong, Gyeongnam province. Chemical-grade gypsum was applied in two soils having EC 2.25 and 9.48 dS/m at rates of 0, 0.5, 1.0 and 2.0%(wt/wt). $CH_4$ emission was characterized a week interval by closed chamber method during rice cultivation. $CH_4$ emission rate was significantly decreased with increasing salt accumulation and gypsum application levels. With increasing gypsum application, dissolved ${SO_4}^{2-}$ concentration in the leachate water was significantly increased, which might have suppressed $CH_4$ production in soil. Total $CH_4$ flux was dramatically decreased with increasing gypsum application. In contrast, rice yield was increased with increasing gypsum application and then achieved maximum productivity at 1.0% gypsum application in two soils. CONCLUSION(s): Gypsum is a very good soil amendment to suppress $CH_4$ emission in reclaimed coastal paddy soils, and improve rice productivity and soil properties. The optimum application level of gypsum is assumed at ca. 1% to improve soil productivity with reducing effectively $CH_4$ emission during rice cultivation.

Influence of Soil Pollutants and Fertilizers on Degradation Rate of Herbicide Alachlor in Soil (토양(土壤)중 제초제(除草劑) alachlor 분해(分解)에 미치는 토양(土壤) 오염(汚染) 물질(物質)과 비료(肥料) 성분(成分)의 영향(影響))

  • Kim, Young-Seok;Kim, Yong-Hwi;Moon, Young-Hee
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 1997
  • The influence of manure, chemical fertilizers, heavy metals and cleaner on the rate of degradation of alachlor in soil was studied. The degradation rate of alachlor in the soil followed first-order reaction kinetics. The half-life was 6.4 days. The degradation was accelerated by the amendment of manure. Adding chemical fertilizers to the soil enhanced alachlor degradation more in the presence of nitrogen than potassium. On the other hand, adding heavy metals or cleaner to the soil decreased the degradation rate. The half-life of alachlor in soil treated with Cd, Cr, Ni, Zn and Cu was 11.0, 8.3, 7.9, 7.2 and 6.7 days, respectively, and that of the cleaner is 7.5 days. The microbial biomass and the respiration rate in the soil were promoted by the amendment of manure and chemical fertilizers, and inhibited by the addition of heavy metals and cleaner. The degradation rate correlate positively with the microbial biomass and the respiration rate.

  • PDF

Effect of Water, Organic Matter, and Lime on Degradation of Herbicide in Soil (토양중(土壞中) 제초제분해(除草劑分解)에 미치는 수분(水分), 유기물(有機物), 석회(石灰)의 영향(影響))

  • Oh, Byung-Youl;Ryang, Hwan-Seung
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.154-162
    • /
    • 1984
  • The persistence of butachlor and nitrofen in different soil conditions applied organic matter, lime, and other pesticides was studied under submerged and field moisture capacity. Degradation of the herbicides in soil was significantly retarded by autoclaving the soil and half-life of nitrofen was much longer than that of butachlor under this condition. Submerging the soil enhanced degradation of the herbicides, in particular that of nitrofen. On the other hand, half-life of nitrofen under field moisture capacity was twice longer than that of butachlor. Increased amendment of rice straw to the soil shortened the half-life of nitrofen under submerged soil, however it prolonged that of butachlor when the amendment was exceeded 1000kg/10a level. Liming the soil stimulated herbicide decomposition in the soil, which appears to be pH independent. Butachlor degradation in submerged soil was slightly stimulated by simultaneous application of fungicides and insecticides, but nitrofen persistence was not influenced.

  • PDF

Rice Yield and Changes of Available Silicate in Paddy Soils from Long-term Application of Chemical Fertilizers and Soil Amendments (비료와 토양개량제가 장기 연용된 논토양에서의 유효규산 변동과 벼 수량)

  • Kim, Myung-Sook;Kim, Yoo-Hak;Hyun, Byung-Keun;Yang, Jae-E.;Zhang, Yong-Seon;Yun, Hong-Bae;Sonn, Yeon-Kyu;Lee, Ye-Jin;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1118-1123
    • /
    • 2011
  • The changes of available silicate (Avail. $SiO_2$) contents in paddy soils (sandy loam) were assessed from data of the 41 years fertilization plots in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (O), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPK+C), inorganic fertilizer plus silicate fertilizer as a soil amendment (NPK+S), inorganic fertilizer plus rice straw compost and silicate fertilizer (NPK+CS) and inorganic fertilizer plus rice straw compost, silicate fertilizer and lime (NPK+CSL). Available silicate contents in NPK+S, NPK+CS and NPK in surface soil reached at the highest content ($255{\sim}330mg\;kg^{-1}$) after 41 years and then levelled off. Available silicate contents in subsurface soil (25~30 cm) were higher in NPK+C and NPK+S treatments than those in other treatments. Continuous application of silicate fertilizer affected significantly on the levels of available silicate in surface and subsurface soils. Silicate uptake of top rice was more increased by 98% in NPK+CS and NPK+CSL over NPK. Grain yield also increased by 37~47% in NPK+CS and NPK+CSL as compared to NPK. The combined applications of inorganic fertilizers with silicate as a soil amendment are recommended as the best fertilization practice for fertilizer use efficiency, enhancement of soil fertility status in the continuous rice cropping system in Korea.

Short-term Effects on Soil Property and Leaf Characteristics after Soil Amendment Treatments in Chestnut (Castanea crenata S. et Z.) Orchards (토양 개량제 처리가 밤나무 재배지의 토양 특성 및 잎 형질에 미치는 단기적 영향)

  • Kim, Choonsig;Kim, Weon-Seok;An, Hyun-Chul;Cho, Hyun-Seo;Choo, Gab-Chul;Lim, Jong-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.405-411
    • /
    • 2012
  • This study was conducted to evaluate short-term effects on soil properties and leaf characteristics after various treatments of soil amendments (organic fertilizer: 20 kg tree-1; compound fertilizer+wood-char: compound fertilizer 4 kg tree-1+wood-char 2 kg tree-1; lime fertilizer: 3 kg tree-1; mixed fertilizer: compound fertilizer 1 kg tree-1+organic fertilizer 10 kg tree-1+wood-char 1 kg tree-1; control) in chestnut (Castanea crenata S. et Z.) orchards of Jinju and Sancheong, Gyeongsangnam-do. Soil bulk density, soil pH, soil organic carbon, total nitrogen, exchangeable Ca2+ and Mg2+ in chestnut orchards were not significantly affected by soil amendment treatments. However, leaf weight was significantly higher in the lime fertilizer ($0.65\;g\;leaf^{-1}$) in Jinju and the organic fertilizer ($0.68\;g\;leaf^{-1}$) in Sancheong than in the control treatments (Jinju: $0.46\;g\;leaf^{-1}$; Sancheong: $0.53\;g\;leaf^{-1}$). Leaf area was also significantly higher in the lime fertilizer ($79.1\;cm^2\;leaf^{-1}$) in Jinju and the soil amendments ($70.4\;cm^2\;leaf^{-1}{\sim}78.2\;cm^2\;leaf^{-1}$) in Sancheong than in the control treatments (Jinju: $56.2\;cm^2\;leaf^{-1}$; Sancheong: $60.5\;cm^2\;leaf^{-1}$). Nitrogen concentration of leaf increased significantly in the mixed fertilizer (2.51%) and the compound fertilizer+wood-char (2.50%) compared with the control (1.98%) treatments. The results suggest that soil properties were not affected by soil amendment treatments during short-term period, but leaf characteristics and nitrogen concentration can be an indicator of soil nutrient improvements in chestnut orchards.