• Title/Summary/Keyword: 토양 pH

Search Result 3,075, Processing Time 0.036 seconds

Effects of Change in Soil pH and Treatment of Gibbsite and Organic Matter on Sulfate Adsorption in Soils (Gibbsite와 유기물(有機物) 처리(處理) 및 pH변화(變化)가 토양(土壤)의 SO4= 흡착(吸着)에 미치는 영향(影響))

  • Yoon, Sun-Kang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 1986
  • Laboratory experiments were carried out to investigate the effects of pH, gibbsite, and organic matter on sulfate adsorption by soils. Samples of five soil series (Songjeong, Gopyung, Yeasan, Gyorae, and Namwon), different in physical and chemical properties, were used in this study. The results obtained from sulfate adsorption experiment with sulfate solutions of the concentrations ranging from 50 to 400 ppm were as follows: 1. The adsorption phenomena for five soils were well described by the Freundlich adsorption isotherm over a given range of sulfate concentration. 2. The amounts of sulfate adsorbed and K value of Freundlich adsorption isotherm increased as the initial pH of the suspension decreased. 3. Although the changes in pH of the suspension on the adsorption equilibrium were hardly observed in the soil treated with gibbsite, the sulfate adsorption rates were increased with amount of gibbsite treated. 4. The effects of pH of the suspension on the adsorption rates in the soils treated with gibbsite were remarkable at the level of 0.1% but were little at the level of 1.5%. 5. The adsorption rates of soils, treated with organic matter and incubated for three weeks, were in the order: starch > straw > compost. At the relatively high levels (5 and 10%) of treatments, compost treatment resulted in the sulfate desorption phenomena.

  • PDF

Effects of Artificial Acid Rain on Chemical Properties of Korean Forest Soils (인공산성우(人工酸性雨)가 삼림토양(森林土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Joo, Yeong Teuk;Kim, Young Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.280-285
    • /
    • 1994
  • This study was conducted to investigate the effects of acid deposition on forest soil, major five Korean forest soils(Brown, Dark red, Gray brown, Red and Yellow, and Volcanic ash forest soils) The samples were subjected to receive 1200mm($100mm{\times}12$ times) of artificial acid rain adjusted to pH5.6, 4.0, 3.0 and 2.0. The results obtained of major importance are summarized as follow ; 1. Ca appeared mostly affected at pH treatment of 2.0, while less affected by other pH treatments. Leaching of Ca rapidly increased with increasing of artificial acid rain acidity and application times in Dark red forest soil. 2. In the cases of Mg, K and Na, they showed gradual increase with the addition of artificial acid rain. Mg and Na losses showed similar leaching patterns, but they didn't show difference among the five forest soils. 3. Exchangeable canon concentrations in the soil leachates, which looked slightly different among the five forest soils, were the highest in pH2.0 treatment. Hydrogen ion comsumption capability by exchangeable canon was the highest in Dark red forest soil followed by Volcanic ash, Red and Yellow, Gray brown and Brown forest soils when artificial acid rain were treated.

  • PDF

Prospect of Sustainable Organic Yam Production in Lae, Papua New Guinea (파푸아뉴기니지역의 지속적 마 재배 방향)

  • Chang, K.J.;Seo, G.S.;Ahn, C.H.;Huang, D.S.;Byun, J.M.;Park, C.H.;Jeon, U.S.;Elick, G.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.181-193
    • /
    • 2012
  • There is enough precipitation and sunshine in Lae, Papua New Guinea. pH in soil of yam field averaged 6.4, that is suitable for yam growing. However, a great variation in pH was found from 3.7 to 6.4 in different locations around Lae. EC in the soil was 0.18 mS/cm that has shown short of soil nutrition but ORP was 393mV, allowing to be ideal for yam cultivation. Thoughtful management for soil fertility including supply of organic 1matters is needed for the sustainable organic yam production in Lae region, PNG.

Residue of Fungicide Myclobutanil and Change of Soil Microflora in Upland Soil at Different Evironmental Conditions (환경차이에 따른 밭토양 중 살균제 Myclobutanil의 잔류 및 토양미생물상 변화)

  • Han, Seong-Soo;Choi, Chan-Gyu;Jeong, Jea-Hun;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.28-44
    • /
    • 1995
  • Residue level of myclobutanil[2-p-chlorophenyl-2-(1H-1,2,4-trizol-l-yl-methyl) hexane nitril] and number of soil microorganism were investigated at different environmental conditions such as the sterile and the non-sterile soils, moisture content, pH, temperature, application rate, and soil types under laboratory and field to study the effect of those factors on degradation characteristics of this fungicide and change of microflora in soil. Decomposition rate of myclobutanil was 3.9 times faster in the non-sterile soil than in the sterile soil, 1.6 times in the field than in the laboratory, 1.4 times in the concentration of 10ppm than in that of 20ppm, and 1.2 times in the clay loam soil than in the silty loam soil. Degradation rate of myclobutanil was the fastest at pH 9.0 among the tested pHs and the latest at pH 5.5. Degradation rate of myclobutanil was in order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. Otherwise, the effect of soil water content on myclobutanil degradation was found not clear. Number of microorganism in the non-sterile soil was remarkedly more than that in the sterile soil. Numbers of microbes were not significantly different between treatment plot and non-treatment plot of myclobutanil at the different conditions of soil moisture content, pH, temperature and soil type. Numbers of fungi and total microbes were more in the treatment than in the non-treatment of myclobutanil at field test but the same trends were not found at laboratory test. Within non-treatment of myclobutanil, numbers of microbes were not significantly different under the various condition of pH, application rate, and soil type in laboratory and upland field. The number of bacteria were more in 60% moisture content of water holding capacity than in 40% and the number of fungi were more in $17^{\circ}C$ of soil temperature than in $37^{\circ}C$. Within the application plot of myclobutanil, numbers of microbes were not significantly different at various pH in laboratory and upland field. The number of bacteria and total microbes were more in 80% moisture content of water holding capacity than in 40% and 60% and actinomycetes were more at $27^{\circ}C$ in the clay loam soil than at $17^{\circ}C$ in the silty loam soil.

  • PDF

디젤오염 토양 처리를 위한 $Fe^0$/$H_2$$O_2$시스템에서의 반응성 향상연구

  • 지원현;김지형;강정우;김성용;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.160-163
    • /
    • 2001
  • 본 연구에서는 Fe$^{0}$ /$H_2O$$_2$ 시스템을 이용하여 디젤 오염토양의 산화처리효율과 경제성 향상을 위한 실험을 수행하였다. 앞선 연구결과에서 최적 pH조건은 3이었으며, 과산화수소와 철 분말의 양은 비례적으로 증가할수록 처리효율이 높게 나타났다. 1) 이번 연구에서는 pH조절에 따른 처리효율의 향상효과를 알아보기 위해 pH 값을 3으로 일정하게 유지하여 반응을 수행하였으며, 일정 철 분말 농도조건에서 과산화수소의 주입방법에 따른 반응변화를 살펴보기 위해 과산화수소를 여러 비율로 분할 주입하면서 실험을 실시하였다. 본 연구결과에 따르면 pH를 3으로 일정하게 유지함으로써 초기에만 pH를 3으로 조정한 이전의 연구에서 반응이 경과함에 따라 나타나는 pH상승에 따른 처리효율의 감소 효과를 줄며 전체적인 TPH 처리효율을 10%이상 높일 수 있었으며, 같은 양의 TPH 제거에 소모되는 과산화수소의 양을 20% 정도 줄일 수 있었다. 과산화수소의 분할주입에 따른 반응향상효과 실험에서는 5회에 걸쳐 분할 주입한 경우에 3시간 이후 경미한 반응성 향상효과를 얻을 수 있었다. 이러한 결과는 과산화수소를 분할하여 주입함으로써 한번에 주입한 경우에 비하여 유기물의 산화에 직접적으로 참여하지 않는 과산화수소의 scavenging 효과를 최소화할 수 있음을 보여주는 것이다. 따라서 최적 pH의 일정 유지와 과산화수소의 분할주입으로 철 분말을 이용한 펜톤유사반응의 처리효율과 경제성 제고 모두에 있어서 효과가 있음을 알 수 있었다.

  • PDF

Study on the improvement of Copper polluted soil (동(銅) 광독지토양(鑛毒地土壤) 개량(改良)에 관(關)한 연구(硏究))

  • Jeong, Young Ho;Kim, Moo Kyum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.49-53
    • /
    • 1971
  • The results obtained may be summarized as follows; 1. Yield was decreased by application of calcium materials, but increased with silicate materials. 2. Copper contents in plant and soil were increased with calcium materials, but decreased with silicate materials. 3. Soil pH was also increased from 1.3 to 1.7 with calcium materials application and slightly increased with wallostonite but sodium silicate did not effect on soil pH. 4. The yield was decreased with increasing soil pH. But the yield was highest at soil pH 5.4.

  • PDF

Treatability Study of Phenanthrene Contaminated Soil using Heme and Hydrogen Peroxide (Heme과 과산화수소를 이용한 Phenanthrene 오염토양 처리에 관한 연구)

  • 염혜정;강구영;박갑성;임남웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.92-96
    • /
    • 1997
  • 고농도로 오염된 난분해성 유해오염물질은 토양계에 존재하고 있는 미생물에 대한 독성과 낮은 활성도로 인하여 복원기술 발전에 제한되어진다. 본 연구에서는 pH 4.8과 pH 7.7인 토양에 Phenanthrene을 인위적으로 오염시킨후 heme 촉매와 과산화수소를 이용하여 오염토양을 복원하는 기술에 대한l 기초적 연구를 수행하였다. Heme과 과산화수소를 오염토양에 첨가한 뒤 30일 반응후 토양내 존재하고 있는 Phenanthrene 초기농도 약 400 mg/kg soil에 대한 분해율은 pH 4.8과 7.7 오염토양내 각각 50%와 67%이었다. Heme과 과산화수소를 이용한 오염토양의 복원기술은 중성 오염토양에서 약 3일후 67% 빠르게 분해되는 결과를 보여주고 있다.

  • PDF

Cadmium Adsorption and Exchangeable Cations Desorption in Soils: Effects of pH and Organic Matter Content (토양에서 카드뮴의 흡착과 치환성양이온의 탈착 : pH와 유기물함량의 영향)

  • 박병윤;신현무
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.243-252
    • /
    • 1996
  • In order to investigate the effects of pH and organic matter content on cadmium adsorption and exchangeable cations desorption in soils, the adsorption isotherms of cadmium and the desorption isotherms of calcium and magnesium on four New jersey soils at four pH values were plotted, and the cadmium partition coefficients (Kd) were also calculated. The slopes of cadmium adsorption isotherms dramatically increased with increasing solution pH. Judging from Langmuir adsorption equations, the maximum adsorption quantities(b) of cadmium at high pH values were much greater than those at low pH values for the same soil. The partition coefficients increased greatly with increasing solution pH. The slopes of regression equations between partition coefficients and pH values were steep in the order of the organic matter content of the soils. The correlation coefficients (r2) between partition coefficient and organic matter content for soils. The correlation coefficients (r2) between partition coefficient and organic matter content for $1\times10^{-4}$M increased from 0.3027 at pH 4.0 to 0.9964 at pH 8.5 and from 0.2093 at pH4.0 at 0.9657 at pH 8.5 for$2\times10^{-4}$M ${Cd(NO_3)}_2$. The desorption quantities of calcium and magnesium decreased with increasing solution pH and increased with- increasing cadmium adsorption.

  • PDF

Effects of Diatomearth Application on the Nursery Soil pH in the Tray and on the Growth of Rice Seedling (규조사(珪藻士) 시용(施用)이 수도용(水稻用) 상자(箱子) 육묘(育苗) 상토(床土)의 pH 조절(調節) 및 묘(苗) 생육(生育)에 미치는 영향(影響))

  • Kim, Sun-Kwan;Jung, Pil-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.297-301
    • /
    • 1990
  • The study was conducted to investigate the effects of diatomearth(pH 3 and CEC 20me/100g) on the adjustment of nursery soil pH and on the growth of rice seedling in the tray. The results are as follows ; 1. The soil pH and damping-off of rice seedling were decreased with increase in diatomearth application. 2. Ten to fifteen percent of diatomearth was required to adjuse the optimum soil pH range of 4.5-5.5. 3. Changes in nursery soil pH adjusted by diatomearth were less than those by sulfuric acid during the incubation period. 4. Diatomearth application increased dry weight and height of rice seedling.

  • PDF

Quantitative Determination of pH and Salt Effects on the Soil Sorption Equilibrium of Pentachlorophenol (PCP) (pH와 염이 Pentachlorophenol의 토양 수착평형에 미치는 영향의 정량적 결정)

  • 오정은;이동수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.14-19
    • /
    • 1997
  • Laboratory experiments were conducted to study the effects of pH and salt level on the soil sorption equilibrium of pentachlorophenol (PCP) which is hydrophobic and ionogenic. Experimental results indicated that the sorption equilibrium constant (Kp) of PCP increased with decreasing pH. A quantitative sorption model involving linear isotherms was estabilished to predict the pH effect on the PCP sorption equilibrium over the pH range from 3 to 8. The model prediction was in good agreement with the experimental data. Also, the Kp increased with salt concentration over the entire pH range. At added salt levels less than 0.1M, increase in Kp was larger than when the added levels were higher than 0.1M. Salt might increase the PCP sorption by inducing 'salting out-effect' or by forming deprotonated PCP-cation ion pairs such as PCP$\^$-/K$\^$+/. Taking the pH range (5-8) and the salt content (up to 50 g/L) in the groundwater of Metropolitan landfill sites into consideration, the results indicated that the retardation factor of PCP in this area might range from 3 to 550 depending upon pH and salt content.

  • PDF