• Title/Summary/Keyword: 토양 pH

Search Result 3,081, Processing Time 0.027 seconds

유류오염토양 세척유출수내 미세토사의 효율적 제거방안에 관한 연구

  • 윤세영;최상일;서용식;류두현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.227-230
    • /
    • 2004
  • 본 연구에서는 유류오염토양 세척유출수내 미세토사의 효율적 제거를 위한 최적의 방안 및 적용 운전 조건을 도출하고자 하였다. 응집제를 주입하지 않은 blank 실험결과, 광운대학교 토양 세척유출수는 pH 7~12의 범위에서 65~75%의 효율을 나타내었고, 우이천 하천퇴적 토양 세척유출수는 pH 7~11의 범위에서 30% 안팎의, pH 12에서는 70% 정도의 낮은 효율을 나타내었다. pH 13에서는 두 가지 세척유출수에서 각각 91%, 85%의 효율을 나타내었다. 응집ㆍ침전 실험 결과, 광운대학교 토양 세척유출수는 FeC13, alum, PAC을 적용하였을 때 대체로 99% 이상의 효율을 보였으나, PAM을 적용하였을 때는 pH 13에서만 약 95%의 효율을 보였을 뿐 pH 7~12의 범위에서는 50~70%의 낮은 효율을 보였다. 우이천 하천퇴적 토양 세척유출수는 alum과 PAC을 적용하였을 때 대체로 90% 이상의 효율을 나타내었으나, FeC13와 PAM을 적용하였을 때는 pH 13일 경우에서만 98%이상의 효율을 보였을 뿐 다른 pH조건에서는 대체로 60%이하의 효율을 보였다. 두 가지 세척유출수에 대하여 높은 효율을 보인 alum과 PAC의 경제성을 비교해본 결과 같은 양의 세척유출수를 응집처리 할 경우 PAC에 비하여 alum을 적용하였을 때 적은 비용이 소요되었다. 따라서 alum이 효율성과 경제성에서 가장 우수함을 알 수 있었다.

  • PDF

Effects of Different Potassium Sources on the Ammonia Volatilization from Soils under Flooded Condition (가리(加里)의 시용(施用)이 담수토양(湛水土壤)에서 암모니아의 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 1981
  • The effects of potassium chloride and potassium sulphate on the volatilization of ammonia from acidic clayloam and tidal sandy clay loam soils applied with urea under flooded conditions were studied in a laboratory experiment. Results obtained were as follows; 1. The application of potassium to the acidic soil promoted the volatilization of ammonia through increasing soil pH. 2. The application of potassium to urea treated on the tidal soil which lead pH over 8.0 under flooded reduced conditions decreased the wet soil pH and reduced the volatilization of ammonia from the soil. These effects of potassium were more pronounced in the potassium sulphate treatment than in the potassium chloride. 3. More ammonia was volatilized from the acidic soil applied with potassium sulphate, however, the effects of potassium fertilizers applied to the high pH tidal soil seemed to be masked by high salt content of the soil. 4. Urea brought up soil pH significantly. Potassium sulphate was more effective than potassium chloride in raising pH of the acidic soil, though the reverse could be true in the tidal soil with high pH. The reduction of sulphate might be a major cause for the pH change.

  • PDF

산성강하물 피해예상 산림토양의 이화학적 특성과 산성우에 의한 이들 토양의 화학성 변화

  • 김동호;임수길;이민효
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.140-143
    • /
    • 1996
  • 산성강하물이 산림토양에 미치는 영향을 조사하기 위하여 오염이 우려되는 공단지역(울산, 여천)과 대도시지역(서울, 부산), 그리고 비오염지역인 대조지역(평창, 삼천포)을 대상으로 이들 지역의 산림토양의 특성을 조사하였다. 또한, 이들지역 각각을 대표할 수 있는 산림토양에 인공산성비를 유출시켜 토양의 화학적 성질의 변화를 조사한 결과는 다음과 같다. - 조사지역별 토성분포는 일정한 경향을 보이지 않았으며, 전체 조사지역 토성은 양토(29.0%), 식양토(22.9%), 사양토(18.3%) 3종류가 분포율이 높았고, 이들이 전체의 70.2%를 차지하였다. - 조사지역 전체 산림토양 표토의 pH($H_2O$)는 4.41~5.14 범위로 평균 4.49이고, 심토의 pH($H_2O$)는 4.54 ~ 5.22 범위로 평균 4.69이었다. 지역별로 보면 공단지역(4.44) < 대도시지역(4.57) < 대조지역(5.08) 순서로 토양 pH가 낮은 경향을 나타냈다. - 염기포화도는 3.07 ~ 21.83% 범위이고, 평균값은 7.71%이었다. 지역별 비교에서는 대조지역(19.14%) > 공단지역(6.54%) > 대도시지역(5.60%) 순서로 높은 경향을 보였다. - 치환성 Al 함량은 2.13 ~ 5.59cmol(+)/kg 범위이고 평균 4.62cmol(+)/kg이었다. 지역별 비교에서는 대조지역(2.34) < 대도시지역(3.23) < 공단지역(5.20) 순서로 낮은 경향을 나타냈다. - 4종의 인공산성우(pH 2.0, 3.0, 4.0 및 5.6)를 산림토양에 유출시킨 결과 인공산성우의 유출량이 증가함에 따라 토양유출액의 pH 감소, 토양염기의 유실이 지속적으로 나타났고, AL과 Mn의 용탈량이 증가하는 경향을 나타내었는데, 이러한 현상은 pH 3.0 인공산성우 유출시에 시작되어 pH 2.0에서 뚜렸하였다. - 인공산성우 토양유출 실험결과 울산, 남산 및 평창토양은 H 부하량의 증가에 따른 치환성염기 및 Al과 Mn의 용탈양상은 Sigmoid curve인 y = a/{1+exp(-c+bx)} 모델식에 따랐다.

  • PDF

Studies on the Surface Charge Characteristics of Two Inceptisols and One Aridsol in Hawaii (하와이 화산회(火山灰)로부터 발달한 Inceptisols과 Aridsol 토양(土壤)의 표면전하(表面電荷) 특성(特性)에 관(關)하여)

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 1981
  • Soil surface charge which manipulates some important soil physico-chemical properties such as nutrient and water holding abilities, colloidal stability and soil erosion was investigated in wide range of soil pH, using soils developed originally from same volcanic ash deposit but under different rainfall condition in Hawaii. The results can be summarized as follows : 1. Ustollic Camorthid (Kawaihae soil) which was developed under the lowest rainfall (less than 500 mm/yr) revealed low Z.P.C. (4.5-5.0) and less dependence of net charge on concentration of indifferent electrolytes. 2. Typic Hydrandepts (Akaka and Hilo soils) which were developed under the high rainfall (3050-7600 mm/yr) showed the Z.P.C. in between 5.5-7.0 and high dependence of net charge on concentration of indifferent electroytes. 3. It was found by X-ray diffraction together with total chemical analysis that amorphous materials were dominant (above 6.0%) in Typic Hydrandepts while dehydrated halloy-site (1 : 1 clay minerals) was dominant (45-50%) in Ustollic Camorthid. 4. In spite of little difference in particle size distribution of the soils, the difference of specific surface area was remarkable showing the order of Akaka (289) > Hilo (268) > Kawaihae (93). 5. It was evident, taking account of apparent field pH values, 5.2 of Akaka, 5.5 of Hilo and 7.0 of Kawaihae soil, respectively, that Akaka, and Hilo soils would show either positive or near zero (+ or 0) of ${\Delta}pH$ while Kawaihae soil would exhibit negative (-) of ${\Delta}pH$ at natural field condition.

  • PDF

Determination of Sulfur Requirement to Adjust pH of Alkaline Soil by Buffer Curve Method (알칼리성 토양 pH 교정시 완충곡선법을 이용한 황 시용량 결정)

  • Lee, In-Bog;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.405-415
    • /
    • 2000
  • To determine application rate of elemental sulfur to adjust pH of alkaline soil, buffer curve method was investigated. The elemental sulfur required to control pH 8.3 to pH 6.3 by buffer curve calculation was treated in two soils of silty loam and sandy loam, and the sulfur-mixed soils were moistened with 50% of water holding capacity during incubation of 6 weeks at $30^{\circ}C$. Soil pH was lowered with incubation and reached to target point after 4 weeks of incubation, and elemental sulfur was oxidised entirely to sulfate. This means that buffer curve has the accuracy to determine sulfur application rate in alkaline soil. However it is estimated that application rate of sulfur should be carefully determined in the field scale. Excess application of elemental sulfur resulted in extremely low soil pH and caused the hinderance of lettuce growth by nutritional imbalance and ion toxicity. To simplify the determination procedure of sulfur requirement, buffer curve method by addition of 0.1N-HCl solution as unit of mL was developed, it was compared with theroutine methods which diluted $H_2SO_4$ solution and $Ca(OH)_2$ are added as cmolc per kg soil to adjust each pH step. Buffer capacities, cmolc kg $soil^{-1}$ $pH^{-1}$, calculated from two buffer curves were not significantly different. The result indicates that buffer curve method by 0.1N-HCl can be used to adjust high pH of alkaline soil.

  • PDF

Effects of Soil Organic Matter on Surface Charge Characteristics of Paddy and Upland Soils (논과 밭 토양의 표면전하 특성에 미치는 토양 유기물 영향)

  • Lim, Sook-Il;Lee, Moon-Yong;Hyun, Seung-Hun;Lee, Sang-Eun;Jeong, Chang-Yoon;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.414-419
    • /
    • 1998
  • The contribution of soil organic matter on the soil surface charge characteristic of paddy and upland soils weathered from granite or limestone was evaluated. The surface charge characteristics of the soils with and without soil organic matter by pre-treatment with hydrogen peroxide was determined at pH 3.5~9.0 range using the ion adsorption method. Regardless of soil organic matter removal, the soil surface negative charge increased linearly by the increase of pH with high statistical significance at all kinds of soils. Here, the differential increasement of soil surface negative charge by pH inclease, dCEC/dpH, was proposed as the parameter of pH dependency of the soil surface charge. The dCEC/dpH of soils with organic matter was in the range of 0.91~4.59, while it was dramatically decreased to the range 0.16~1.91 by the removal of organic matter. The soil surface charge derived from soil organic matter ranged from 15% to 82% to the total amount of surface charge. The magnitude of surface charge carried by 1% of soil organic matter showed considerable differences between soils from 0.22 to $5.03cmol^+\;kg^{-1}$. The effect of soil organic matte on the dCEC/dpH was higher in paddy soils with high oxalic acid extractable Fe than upland soils.

  • PDF

Soil Properties Affecting C-type slope as a Parameter for Silica Sorption of Soils (토양의 규산 흡착 지표인 C-type slope에 영향을 미치는 토양 특성)

  • Lee, Sang Eun;Lim, Woo Jin;Ahn, Jae Ho;Kim, Jeong-Gyu;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.365-370
    • /
    • 2004
  • To invesligate the characteristics of silica sorption on soils silica sorption experiments were conducted with 9 soils at 4 pH levels (5, 6, 7, and 8). Silica sorption increased in great extent with increase of pH. At the same pH level silica sorption increased linearly with increase of equilibrium $SiO_2$ concentration. Silica sorption characteristics was C-type. The C-type slope, i.e., the slope of linear regression of silica sorption isotherm, increased exponentially with increase of pH in all soils. Log(C-type slope) increased linearly with increase of pH in all soils. The slopes of linear regression were similar in most soils from 0.29 to 0.34 except Sachon and Jonggog soil. None of the soil properties showed any correlation with the slope of linear regression of Log(C-type slope) to pH. Only $Fe_o$ (oxalate extractable Fe oxides) was significantly correlated with the Log(C-type slope) at pH 7 in simple correlation analysis, and was shown to be the principal contributor as determined by standardized multiple linear regression.

Studies on the Relation between Acid Deposition and Soil Chemical Properties in Forest Areas - Especially in Gyeongsangnam-Do Province - (산성강하물과 산림토양 화학성의 관련성에 관한 연구 - 경상남도 지역을 중심으로 -)

  • Lee, Chong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.260-267
    • /
    • 2008
  • This study was carried out to investigated the relation between air depositions and soil properties in Gyeongsanman province. Soil pH was average 4.40 in regions, and was the highest soil pH value in Miryang-sanne(pH 5.02), the lowest pH value in Namhae-seomyeon(pH4.08). Soil pH, soil organic matter content, avail phosphorus, K, Ca and cation exchange capacity(CEC) were significantly different among regions(p<0.05). Pb in Heavy metal content was 3.86mg/kg average value, and was the highest in Keo-je region(9.87mg/kg), the lowest in Mryang-sanne (0.86mg/kg). Zn, Cd, Cr and Ni were significantly different among regions(p<0.05). Correlation between rainfall pH and soil properties were positive in soil $pH(r=0.7826^{**})$, Ca$(r=0.6278^*)$, Mg$(r=0.5841^*)$, CEC$(r=0.6341^{**})$ and Cd$(r=0.5995^*)$, and were negative in Pb$(r=-0.5283^*)$. Correlation between $SO_2$ concentration and soil properties was negative in soil pH$(r=-0.6796^{**})$, Ca$(r=-0.5810^*)$, Mg$(r=-0.5522^*)$) and CEC$(r=-0.5905^*)$. Correlation between $NO_2$ concentration and soil properties were positive in organic matter $(r=0.6208^*)$, K$(r=0.5380^*)$. It was predicted that rainfall and $SO_2$ concentration would affect soil acidification, and soil heavy metal content related Cd and Pb. Others soil heavy metal were not related.

Studies on the Characteristics of Phosphorus in the Upland Soil -IV. Distribution Percentage of Inorganic Phosphorus on Different Levels of Soil Chemical Properties (경작지(耕作地) 전토양(田土壤)의 인산특성(燐酸特性)에 관(關)한 연구(硏究) -IV. 토양특성별(土壤特性別) 분획인(分劃燐)의 분포(分布))

  • Shin, Cheol-Woo;Kim, Jeong-Je;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 1990
  • A laboratory experiment was conducted to investigate the relationship between the composition of phosphorus forms and soil chemical properties. The soil samples were collected from the farms of the 149 locations where vegetables were intensively cultivated with heavy application of phosphorus. The composition percentages of Ca-P and Saloid-P to the total phosphorus were increased as increasing soil pH while those of Fe-P and Al-P were decreased, The composition percentage of Fe-P were increased up to pH 5.0-6.0 and decreased as increasing pH above 6.0. respectively. The pH dependency of Al-P and Fe-P composition percentage was more remarkable for the soils with high available phosphorus (>500ppm) than with low available phosphorus (<500ppm). Composition percentages were in order of Fe-P>Al-P>Ca-P>Saloid-P for the soils with available phosphorus below 500ppm, while those were in order of Al-P>Fe-P>Ca-P>Saloid-P for the soils with high available phosphorus above 1,000ppm. Composition percentages of Al-P and Fe-P were increased as increasing active Al content, and Fe-P was increased as increasing of active Fe and P sorbed but saloid-P, Al-P and Ca-P were decreased.

  • PDF

Volatilization of Amnonia from Flooded Soils Applied with Different Nitrogen Sources (질소질비료(窒素質肥料)가 시용(施用)된 담수토양(湛水土壤)에서의 암모니아의 휘산(揮散))

  • Oh, Wang-Keun;Oh, Jae-Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 1981
  • The ammonia volatilization from two different soils, an acidic normal soil and a neutral tidal soil applied with different nitrogen sources was investigated through a laboratory incubation experiment conducted at about $30^{\circ}C$ for 18 days. Results obtained were summerized as follows; 1. The ammonia volatilizat ion was increased by the urea application that increased soil pH. 2. Ammonium sulfate and ammonium chloride did not raise reduced soil pH over 7.30 and showed little ammonia volatilization keeping the $pK_b$ value of 4.72-3 3. An organic fertilizer (Miweon Co. made) raised pH of the tidal land soil little more than ammonium sulfate or ammonium chloride ; however, it did not increase the ammonia volatilization as much as from other fertilizer treatment plots of the same pH, which may mean that the organic fertilizer is effective in reducing ammonia volatilization. 4. It seemed that easier volatilization of ammonia from urea may occor in ordinary soil low in original pH than from tidal soil by the application of urea which may mean that if the pH of soils are the same, greater volatilization would result from the former than the latter. 5. Application of raw straw to tidal soil lowed pH and reduced ammonia volatilization.

  • PDF