• Title/Summary/Keyword: 토양 입단

Search Result 84, Processing Time 0.021 seconds

Changes of the Soil Physic-Chemical Properties and Rice Productions with Methods Applied Organic Materials in Organic Culture (벼 유기재배에 있어서 유기자재 시비방법에 따른 토양 및 수량 특성 변화)

  • Kim, Hyun-Woo;Kim, Byung-Ho;Yang, Seung-Koo;Kim, Hong-Jae;Son, Bo-Gyon
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.285-285
    • /
    • 2009
  • 벼 유기재배에 있어서 녹비작물을 이용하여 화학비료를 대신하고 있으나 녹비를 이용하기 위해서는 월동 전에 파종하고 이듬해 벼 이앙 전에 토양에 환원을 해야 하는 번거로움이 있다. 따라서 벼 재배 직전에 유기자재를 이용하여 화학비료를 대신하고자 했을 경우 유기자재를 전층시비와 표층시비의 차이에 따른 토양중의 이화학적 특성과 벼의 수량특성의 변화를 구명하였다. 벼 유기재배시 토양양분공급용으로 이용되고 있는 유기자재 4종을 공시하여 유기자재의 질소 성분량(7kg/10a)을 기준으로 하여 이앙 20일전에 시비방법별로 전층시비와 표층시비 2처리로 구분하여 전량 기비시비하고 경운한 다음 동진1호를 시험품종으로 하여 2년 연속 시비처리와 벼를 재배하면서 일어나는 토양의 이화학적 특성과 벼 생육 및 특성의 변화를 시기별로 조사하였다. 시험 전 토양의 화학성은 표층시비구의 염류농도, 가리와 석회의 함량이 다소 높아서 염류농도가 전층 시비구 보다 높은 조건의 토양이었다. 유기자재별 무기화 정도는 전층시비보다 표층시비를 할 때 약 20~30일 정도 빨랐다. 토양 중의유기물 잔존함량은 시비방법간의 큰 차이는 없었으나 표층시비를 할 경우 후기로 갈수록 다소 증가되는 경향이었으나, 전질소 잔존함량은 감소되었다. 토양 액상과 공극율은 전층시비>표층시비였으며, 입단 형성력도 같은 경향이었다. 토양 효소활성은 PME의 활성은 유기자재를 전층처리하였을 때 촉진되었으며, $\beta$-Glucosidase의 활성은 전층보다 표층처리시 활성이 높았다. 시비방법에 따른 벼의 수량 특성은 시비방법별로는 표층시비를 할 경우 전층시비보다 4~7%의 높은 특성을 보였으며, 관행대비 1년차에는 3~9%의 낮았으나, 2년 연속처리를 할 경우 대조구와 비슷해 지는 경향이었다.

  • PDF

Changes of the Soil Physic-Chemical Properties and Rice Productions with Organic Materials used in Organic Culture (벼 유기재배에 있어서 유기자재처리에 따른 토양 및 수량 특성 변화)

  • Kim, Hyun-Woo;Kim, Sun-Kook;Seo, Youn-Won;Kim, Hong-Jae;Son, Bo-Gyon;Chung, Doug-Young
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.286-286
    • /
    • 2009
  • 벼 유기재배시 토양양분공급용으로 이용되고 있는 유기자재(금수강산골드)를 대조로 하고 식물성유기 자재(쌀겨팰렛), 동물성유기자재, 식물성과 동물성이 혼합된 유기자재를 질소 성분량(7kg/10a)을 기준으로 하여 이앙 20일전에 전량 기비로 시비하고 경운한 다음 동진1호를 시험품종으로 하여 2년연속 유기 자재와 벼를 재배하면서 일어나는 토양의 이화학적 특성과 벼 생육 및 특성의 변화를 시기별로 조사하였다. 시험 전 토양의 화학성은 전반적으로 유기물은 높고 인산함량은 매우 낮은 조건의 토양이었다. 관행유기자재(금수강산골드)는 20일경에 50% 무기화율을 보였으나, 식물성자재 40~60일경, 동물성자재와 혼합자재(식물성+동물성)는 60~80일경에 47~52% 무기화 정도를 나타내 식물성 자재의 무기화 속도가약 20일정도 빨랐다. 토양 중의 유기물 잔존함량은 식물성자재 > 혼합자재 > 동물성자재 > 관행 순이었으며, 토양 중의 전 질소 잔존함량의 경우 관행유기자재는 처리초기부터 빠르게 감소하는 특성을 보이나, 식물성자재와 혼합 자재는 시비초기와 거의 비슷한 수준을 유지하였고, 동물성 자재는 서서히 감소되는 경향이었다. 토양 물리성은 액상과 공극율 다소 증가되는 경향이었으며 식물성과 혼합유기자재처리구가 컸으며, 토양 유효 입단 형성력에 있어서도 유사한 경향이었다. 벼 수량 특성은 관행유기자재보다 1년차에는 3~9%의 낮았으나, 2년 연속처리를 할 경우 관행유기자재를 처리할 때와 동일한 생산성을 기대할 수 있었다. PME와 $\beta$-Glucosidase의 효소활성은 관행유기자재 < 식물성자재 < 동물성자재 < 혼합유기자재의 순으로 높은 경향을 볼 수 있었다.

  • PDF

Change of Physical Properties on Long-Term Fertilization of Compost and Silicate in Paddy Soils (퇴비 및 규산질비료의 장기연용에 따른 토양 물리적특성 변화)

  • Park, Chang-Young;Choi, Jyung;Park, Ki-Do;Jeon, Weon-Tai;Kwon, Hye-Young;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This study was carried out to investigate the change of soil physical properties in long-term fertilized paddy soils with a Fine silty family of Typic Halpaqueps (Pyeongtaeg series). Treatments fertilized consisted of no fertilizer, compost, NPK, NPK+compost for thirty one years and of NPK+silicate for seventeen years. Water stable aggregate and degree of aggregate stability, which were higher in surface-soil than sub-soil, were high in order of NPK + compost > NPK + silicate > compost > NPK > no fertilizer plot. The ratio of aggregate larger than 0.5mm was high at compost and silicate plots but that smaller than 0.5mm was high at no fertilizer and NPK plots. And this aggregate stability showed negative correlation with soil hardness and bulk density ; positive correlation with sedimentation volume of soils in water. Sedimentation volume of soils in water was a little higher in surface-soil than sub-soil and in wet soil than dry soil, respectively. Pore space ratio and water retention capacity of soils were the most increased by the application of compost and not affected by silicate as in cases of liquid limit and plastic limit. Ignition loss of soils was high in order of NPK + compost > compost > NPK + silicate > NPK > no fertilizer plot. And field shattering ratio of soil mass smaller than 25.4mm was relatively high in NPK + compost, compost, and silicate plots.

  • PDF

The Chemical Properties and Fertilizer Effect of a Residual By-product of Glutamic Acid Fermentation (구르타민 산발효잔사가공물(酸醱酵殘渣加工物)의 성질(性質)과 비효 -II. 토양(土壤)의 이화학적성질(理化學的性質) 개량효과)

  • Hong, Chong Woon;Jung, Yee Geun;Park, Chon Suh;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.227-230
    • /
    • 1973
  • To elucidate the effect of the organic carbon compounds included in a separate from glutamic acid fermentation residue (G. A. F. R) on the improvement of the physico-chemical properties of soil, on a soil low in organic matter content, treated with G. A. F. R and compost, observations on the total organic matter, humic acid, fulvic acid, C. E. C. and the development of aggregates were made. From the results of the investigations it was concluded that, the organic carbon compound in the tested G. A. R. F. is more effective than compost in increasing the total organic matter, humic acid, fulvic acid and C. E. C. of soil and in enhancing the development of soil aggregates.

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped Land -I. Effects of Vinyl Mulching and Zeolite Application on Silage Corn (신개간경사지(新開墾傾斜地) 토양개량(土壤改良)과 작물생육(作物生育)에 관(關)한 연구(硏究) -I. 청예용(靑刈用) 옥수수에 대(對)한 비닐피복(被覆) 및 Zeolite 시용(施用) 효과(效果))

  • Hur, Bong-Koo;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 1989
  • A field experiment was carried out to evaluate the effects of zeolite application and vinyl mulching on the changes in soil physico-chemical properties and yield of silage corn on the newly-reclaimed sloped land. Corn (Suweon 19) was cultivated under 4 application levels of zeolite, 0, 500, 1,000 and 1,500 kg/10a, with and without vinyl mulching, and various soil physico-chemical properties and corn growth were investigated. Soil physical properties, such as cation exchange capacity and water stable aggregates, were increased, but soil hardness was decreased by zeolite application. The porosity and temperature of soil were increased greatly by vinyl mulching. The differences between daily maximum and minimum soil temperature were large in beginning stages of crop growth, but those were decreased to $2^{\circ}C$ after mid-August. Zeolite application enhanced the plant growth and increased yields by 3-37% compare to control, also vinyl mulching brought to increase the corn yields by 17-23%. Water stable aggregates was correlated with soil hardness, and silage yields were highly correlated with porosity, air phase and water stable aggregates.

  • PDF

Effect of Gypsum, Popped Rice Hull and Zeolite on Soil Aggregation in Reclaimed Tideland (간척지 토양에서 석고, 팽화왕겨 및 Zeolite 처리가 토양의 입단형성에 미치는 영향)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Lee, Sang-Uk;Kim, Dae-Geun;Na, Young-Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Gypsum treated to fine sandy loam increased the fornation of >2 mm aggregates in $1,550kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg1) and $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg2) to compare with control, Kc, at 60DAT, and bigger aggregates in general at 90DAT. The higher treatment of gypsum level, the <0.1 mm aggregates were less decreased as in Kbfg1, Kbfg2, and $6,200kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg3) and aggregates of 0.25->2 mm were increased with increasing level of gypsum with more effective in Kbfg2 and Kbfg3 at 120DAT. Gypsum treated to silt loam increased aggregates of 2.0-1.0 and 1.0-0.5 mm in $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Mbfg2) to compare with control (Mc), at 60DAT. Degrees of aggregation from 0.5-0.25 mm to >2 mm aggregates at 90DAT were distinctly higher. The higher treatment of gypsum level accelerated more aggregation of silt loam soil, and aggregates of 0.5-0.25 mm was most increased in Mbfg2 at 120DAT. Popped rice hulls treated to fine sandy loam increased aggregates of 2.0-1.0 mm in plots of $1,000kg\;10a^{-1}$ (Kbfhl) only to compare with control (Kc), at 60DAT, and aggregates of >2 mm and 2.0-1.0 mm Kbfh1 at 90DAT. At 120DAT, aggregation by popped rice hulls was most effective in Kbfbl pot. Popped rice hulls treated to silt loam increased in aggregates of >2 mm and 2.0-1.0 mm in $2000kg\;10a^{-1}$, Mbfb2 to compare with control, Mc, at 60DAT. Degrees of aggregation by popped rice hulls at 90DAT were higher in $1,000kg\;10a^{-1}$, Mbfh1, and Mbfh2, and at 120DAT was in $3,000kg\;10a^{-1}$, Mbfb3. Zeolite treatment with popped rice hulls, $1,500kg\;10a^{-1}$, increased in >2.0 mm aggregates in $1,000kg\;10a^{-1}$, Kbfbz1, $2,000kg\;10a^{-1}$, Kbfbz2, $3,000kg\;10a^{-1}$, Kbfhz3, and Mbfbz1, $1,000kg\;10a^{-1}$, Mbfbz2, $2,000kg\;10a^{-1}$, and $3,000kg\;10a^{-1}$, Mbthz3, to compare with control (Kc and Mc), at 60DAT. irrespective of soil texture. At 90DAT, >2.0-0.5 mm aggregates increased in Kbfhz1 of fine sandy loam. aggregates of >0.25 mm in $200kg\;10a^{-1}$ (Mbfbz1), $400kg\;10a^{-1}$ (Mbfhz2), $800kg\;10a^{-1}$ (Mbfhz3) of silt loam increased with the level of zeolite treatment. At 120DAT, the effect of zeolite treated to both soils showed the decrease of <0.1 mm aggregates. As the result, soil amendments for soil aggregation was more effective in the order of popped rice hulls+Zeolite > gypsum > popped rice hulls in fine sandy loam, and in the order of gypsum > popped rice huUs+zeolite > popped rice hulls in silt loam, respectively.

Granulation of Fine Zeolite Powder by Adding Polyvinyl Alcohol (Polyvinyl Alcohol첨가(添加)에 의한 Zeolite미분(微粉)의 입상화(粒狀化))

  • Choi, Jyung;Choi, Choong Ryeol;Lee, Dong Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.123-129
    • /
    • 1995
  • For the propose of increasing the value added, zeolite powder was granulated by adding Polyvinyl Alcohol (PVA) as cementing material. The optimal concentration of PVA for granulation and the physical properties of the prepared granule were investigated. Four percent PVA stock solution was made by adding distilled water at $90^{\circ}C$ water bath and incorporated with zeolite. The contents of water stable granule above 2.0mm in diameter was 98.0% in the case of 0.3% PVA addition and almost 100% in the case of 0.6% PVA addition. Increasing PVA concentration of granules increased the hardness and decreased the infiltration rate and the maximum water holding capacity of granules, However, the drying method hardly affected the physical properties of granules. With the increase in the mixing ratios of kaolinite or bentonite to zeolite, the hardness of granules increased but high water contents of granules resulted in rapid decrease in the hardness of granules. However, when smectite or perlite was mixed with zeolite, the increase in mixing ratios to zeolite resulted in the decrease in hardness, the increase in the infilteration rate and maximum water holding capacity of granules.

  • PDF

Effects of Soil Conditioner "Uresol and Bitumen" Treatment on Water Movement and Soil Loss -I. The Changes of the Aggregate Stability and the Moisture Retention (토양개량제(土壤改良劑) Uresol 및 Bitumen 처리(處理)가 토양(土壤)의 수분이동(水分移動)과 유실(流失)에 미치는 영향(影響) -I. 토양입단(土壤粒團)의 안정성(安定性)과 보수력(保水力) 변화(變化))

  • Jo, In-Sang;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 1983
  • This study was aimed at finding out the effect of soil conditioners on soil structural properties, soil water movements and soil losses. Sandy loam and silt loam soils were treated with two different kinds of soil conditioners, hydrophobic Bitumen 0.4% or hydrophilic Uresol 0.6%, and then various physical characteristics of the treated and untreated aggregates were determined. The results are summarized as follows: 1. By the soil conditioner treatment, Bitumen 0.4% or Uresol 0.6%, the aggregate stability was increased to 1.650-3.450 as compared to 0.275-0.417 of untreated soil and the sedimented bulk density was decreased. 2. Air-water permeability ratio of sandy loam was decreased to 2.2 by Uresol treatment as compared to untreated soil 3.8. In case of silt loam, it was decreased to 6.9 and 5.3 by Bitumen and Uresol treatment as compared to untreated 9.4, and water permeability of treated soil continued high value for 40 days. 3. Air-water permeability ratio was sharply enhanced as the structure instability index increased, but the ratio increased very smoothy after the index over 1. 4. The soil moisture retention was increased 2 to 6% by Uresol treatment, but it was decreased 1 to 3% by Bitumen treatment.

  • PDF

Stable Macro-aggregate in Wet Sieving and Soil Properties (습식체별에 안정한 대입단과 토양특성과의 관계)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyub-Sung;Oh, Dong-Shig;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2007
  • Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.

Effects of Polyacrylamide and Biopolymer on Soil Erosion and Crop Productivity in Sloping Uplands: A Field Experiment (고랭지 밭 토양유실 방지를 위한 폴리머 소재(폴리아크릴아마이드 및 바이오폴리머)의 현장적용성 평가: 작물재배실험)

  • Choi, Yong-Beom;Choi, Bong-Su;Kim, Se-Won;Lee, Sang-Soo;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1024-1029
    • /
    • 2010
  • Use of polymeric soil amendments is an emerging way to reduce soil erosion, and improve crop productivity and soil quality. Objective of this study was to evaluate the effects of anionic polyacrylamide (PAM) and synthetic biopolymer on soil erosion, crop growth and soil quality. The aqueous solutions of PAM and biopolymer at 40 kg/ha were applied to loamy soil plots (3 m width by 18 m long) having a 20% slope during radish (Raphanus sativus) cultivation. Results showed that PAM and biopolymer treatments increased aggregate stability up to 11% compared to the untreated control. Treatments of PAM and biopolymer also increased leaf length of radish but there was no significant difference in crop yield. Soil loss was decreased by up to 41% using the polymeric soil amendments; however, no difference in runoff was found, compared to the untreated control. Soil loss was logarithmically increased against an increase in rainfall intensity ($R^2=0.85$). Our findings suggest that proper use of polymeric soil amendments would be beneficial to maintain soil quality and reduce soil erosion in sloping uplands.