• Title/Summary/Keyword: 토양 입단

Search Result 84, Processing Time 0.02 seconds

Relationship Between Soil Water-Stable Aggregates and Physico-chemical Soil Properties (토양 내수성 입단과 토양특성과의 관계)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Song, Kwan-Cheol;Sonn, Yeon-Kyo;Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Soil aggregation has been considered as an important factor not only for increasing soil productivity and soil quality but also improving nutrient use availability and water use efficiency. However, the relationship between soil aggregation and soil properties hasn't well reported for Korean soils. Objective of this research was to identify the relationship among soil water-stable aggregate (WSA), soil properties and soil dispersion ratio. Soil samples were analyzed for water-stable aggregate, Middleton's dispersion ratio, and soil physical and chemical properties. Water-stable aggregate was significantly correlated to soil textural properties, soil organic matter, and exchangeable cations. Middleton's dispersion ratio was significantly correlated with water-stable aggregate ($r=-0.76^{***}$). Regression equation for water-stable aggregate was estimated by Middleton's dispersion ratio (Y=-0.79X + 96.49; $r^2=0.58^{**}$). In this research, we conclude that water-stable aggregate was significantly correlated with some soil properties and was able to be estimated by rapid and easily measurable Middleton's dispersion ratio.

Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass (유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향)

  • Lee, Sang-Kook;Minner, David
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

Influence of Continious Application of Gypsum, Popped Rice Hull, and Zeolite on Soil Aggregation of Reclaimed Sandy Loam Soils (석고, 팽화왕겨 및 제오라이트 연속시용이 간척지 세사양토의 입단화에 미치는 영향)

  • Baek, Seung-Hwa;Kim, Jae-Young;Lee, Sang-Uk;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.764-769
    • /
    • 2010
  • We investigated influence of continious application of gypsum (G: $CaSO_4{\cdot}2H_2O$), popped rice hulls (H) and zeolite (Z) on soil aggregation of reclaimed sandy loam soils. The application rates amended to fine sandy loam from reclaimed soils at Kyehwado were varied as follows:1550 (G1), 3100 (G2), 6200 (G3), 1000 (H1), 2000 (H2), 3000 (H3), and 200 (HZ1), 400 (HZ2) and 800 (HZ3) added to 1500(H) kg $10a^{-1}$, respectively. Soil aggregates were analyzed for 60, 90 and 120 days after treatments (DAT). At 60 DAT, The amount of aggregate from soil samples treated with gypsum was slightly increased with G1 while the aggregation was decreased by 4.66% for G3 for soil aggregates than thar of control. The treatments of H or HZ were effective in soil aggregation. The effect of treatment was in the order of H > HZ > G. At 90 DAT, increasing amount of gypsum attributed to decrease in soil aggregates. Therefore, we could conclude that suitable amounts of gypsum for soil aggregation in fine sandy loam might be 1550 kg $10a^{-1}$ or less. H1 increased aggregation by 7% for aggregate size between 1.0 and 2.0 mm. HZ1 was most effective in aggregation by 52.78% among the treatments while H2 and HZ3 51.50% and 48.51% at 120 DAT, respectively. As a result, we found that the effect of the treatment for soil amendments was in order of H > HZ > G.

The Influence of organic Matter on Soil Aggregation in Forest Soils (삼림토양내(森林土壤內)의 유기물함량(有機物含量)이 토양입단화(土壤粒團化)에 미치는 영향(影響))

  • Park, Gwan Soo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.367-375
    • /
    • 1990
  • In order to determine the effects of bedrock, organic matter, calcium and iron oxide on the soil aggregation, this research has performed with soils from bedrock regions of Limestone, Granite and Granite gneiss. This research was also to estimate how organic matter, calcium and iron oxide influence on soil aggregation under different forest conditions in various bedrock regions. And it also had a purpose to rate physical factors relevant to soil aggregation, their characteristics and aggregate diameter which closely relates to stabilities in the process of soil erosion. The following conclusions have been drawn in response to the overall research objectives. The rates of the soil aggregation on different bedrock regions were 21% in Limestone bedrock, 19.8% in Granite bedrock and 9.9% in Granite gneiss bedrock. A main factor in soil aggregation was the orgainc matter content in soils and the rate of soil aggregation increased in the constant proportion with the organic matter content. The relation could be formulated into Y=4.31X-4.37(Y : aggregation ratio X : organic matter content). The soil aggregation ratio under the deciduous forests eras higher than that under the coniferous forests. It was considered that this resulted from differences in organic matter content. Soil aggregates with larger diameter than 0.5mm were found more in Limestone bedrock than other smaller size soil aggregates of 0.25mm diameter were more distributed in Granite gneiss bedrock. Granite bedrock region had normal distribution in soil aggregate sizes with the highest frequency of 0.5mm diameter. Calcium and iron oxides had only partial influences on the soil aggregation in some specific conditions. But in Limestone bedrock region calcium influenced on the soil aggregation with the organic matter content.

  • PDF

Relationship between Water Stable Aggregate and Macroporosity in Upland Soils Calculated by Fragmentation Fractal Dimension (파쇄프랙탈차원을 이용한 밭토양 내수성입단과 대공극률의 관계 평가)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyup-Sung;Hur, Seung-Oh;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.58-64
    • /
    • 2009
  • The objectives of this study were to investigate the aggregate fragmentation in wet-sieving and to evaluate the relationship between the aggregate fragmentation fractal dimension and macro-porosity of upland soils, using three different textural types of soils including Gopyeng series (Fine, Typic Hapludalfs), Gyuam series (Fine silty over coarse silty, Fluvaquentic Eutrudepts), and Jungdong series (Coarse loamy, Typic Udifluvents) located in Gyeonggi province. Undisturbed soil samples with five replicates were seasonally sampled and used for measuring water stable aggregate, macropores, and physico-chemical properties of soils. The aggregate stability in wet-sieving was digitalized as three types of fragmentation fractal dimension ($D_f$), geometric mean diameter (GMD), and mean weight diameter (MWD). $D_f$ had higher correlation with GMD than with MWD. Seasonal aggregate stability showed the highest values in summer, and decreased in the order of spring and autumn. The macroporosity had higher in topsoil, in autumn, and in ridge, than in plow pan layer, in summer, and in row, respectively. The relationship between $D_f$ and macroporosity, especially more than 99 m, showed high correlation only in soils with $D_f$ less than 3.1, which means more aggregated soils compared to soils with $D_f$ more than 3.1. Besides, in the soils with the fractal dimension less than 3.1, the power function relation between saturated hydraulic conductivity and macroporosity more than 99 m had relatively high determinant coefficient, and vice versa. Therefore, it could be thought that fragmentation fractal dimension is available for confirming macroporosity induced from aggregation.

Effect of Organic Material Treatments on Soil Aggregate Formation in Reclaimed Tidelands (유기물 처리가 간척지 토양의 입단형성에 끼치는 영향)

  • Son, Jae-Gwon;Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • It is generally accepted that organic materials are a significant factor on the soil aggregation formation but little information exists on how the formation and stabilization of aggregates in reclaimed tidelands. In this work, the effects of organic materials on the soil aggregate formation in reclaimed tidelands were determined. The soil was treated with 5 cm-size chopped fresh italian ryegrass residues (fresh organic material), commercial livestock compost with swine manure and sawdust (by product fertilizer), and fresh organic material + by product fertilizer (1 : 1 w/w) after ploughing at 20 cm soil depth. The three organic materials applied $2,000kg\;10a^{-1}$ every year. Water stable aggregate was estimated by wet-sieving method. Three years after the beginning of the experiment, water stable aggregate rate and MWD (mean weight diameter) were higher fresh organic material treatment than two other treatments. For improvement of physical property and structure of soil in reclaimed tidelands, fresh organic material treatment was more suitable than two other treatments.

Effect of Some Soil Conditioners on Soil Physical Properties and Tobacco Growth (토양개량제 시용이 토양물리성과 담배생육에 미치는 영향)

  • 이철환;진정의;한철수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.685-691
    • /
    • 1996
  • This experiment was conducted to investigate the effect of some soil conditioners, such as polyvinylalcohol(PVA), zeolite and perlite, on the changes of soil physical properties and on tobacco growth in paddy-upland rotated field. Soil conditioners were treated at the rates of 120kg in PVA, 500kg in zeolite and perlite per l0a, respectively. Ratio of soil aggregates formed from the treated plots tended to. be higher than those from the control in the order of PVA > perlite > zeolite. The wet aggregate stability, mean weight diameter, moisture retention and air permeability from the treated plots tended to be higher than those from the control. Amounts of water-stable aggregates of PV A-treated soil increased with higher soil moisture showing a peak at 50% of moisture content. But with respect to particle of size aggregate formed for crop growth and workability in field, it was presumed that 40% of soil moisture content would be most desirable. Visual characters of soil surface throughout the experiment clearly showed that treated soils were maintaining better surface roughness and porosity than control, but difference in water stable aggregates among treated plots tended to be narrowed. The growths of tobacco, espacially its root zone were better in conditioner treated plots than in non-treated plot showing best in PVA-treated soil.

  • PDF

Assessment of Soil Aggregates and Erodibility Under Different Management Practices in the Mountainous Soils (산지에서 영농방법에 따른 토양입단과 침식성 평가)

  • Joo, Jin-Ho;Yang, Jae-E;Kim, Jeong-Je;Jung, Yeong-Sang;Choi, Joong-Dae;Yun, Sei-Young;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • Soil erosion in the hilly and mountainous uplands in the Daekwanryong area, Kangwon-Do, were investigated through a field plot experiment. The plot size was 15m long and 2.5m wide with the average slope of 12.5 percents. Soil erodibility factor (K), surface coverage (SC), soil aggregate percentage and wind erodibility (I) were evaluated in the mountainous soils under different management practices for corn and potato cultivations. Soil erodibility factor (K) was greater in upper part than in lower part of the plots. Surface coverage (SC) values ranged from 0.01 to 0.84 depending on the amounts of crop residues. Soils having a greater crop residue in surface were less subjected to soil erosion. SC values after corn harvest were 0.4 to 0.8, while those after potato harvest were 0.4 to 0.5, indicating potato might be better than corn for erosion control. Soil aggregate percentages of the experimental plots ranged from 49.7 to 79.8%. Those were higher in potato-cultivated plots with higher surface coverage, organic fertilizer treatment and contour tillage. Soil aggregate percentage of potato-cultivated plots was significantly correlated to crop residue coverage after harvest. The dried soil aggregate percentage, showing the ranges of 26.4 to 56.4%, were higher in the plots with the increased crop residue incorporation. Wind erodibility (I) of the soil was decreased with increasing surface coverage. When soil had 26.4% of the dried aggregate percentage, wind erodibility was estimated to be $183Mgha^{-1}$ which was equivalent to soil loss of $0.5Mg\ha^{-1}day^{-1}$.

  • PDF

Evaluation of Amending Materials to Reduce Soil Loss from Sloping Remediated Agricultural Land (급경사 복원 농경지 토양 유실 저감을 위한 개량제 효율 및 현장 적용성 평가)

  • Hwang, Wonjae;Park, Minseok;Hyun, Seunghun;Ji, Won hyun;Lee, Sang-Hwan
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.180-185
    • /
    • 2017
  • Restoration of min-impacted arable land is often performed through stabilization of trace elements by amendment treatment combined with (clean) soil covering on the surface. Recently, soil loss problem from sloping remediated agricultural lands has risen as an emerging concern. In this study, efficacy of aggregation formation was assessed by single and binary treatments of four potential amendments (bentonite, lime, organic matter, and steel slag) applied on three cover soils having different clay contents (9.4, 14.7, and 21.2% for A, B, and C soils respectively). In results of single treatments, 5% organic matter for A soil and 5% lime for B and C soils were found most effective for the aggregation formation compared to the respective controls (without amendments). Among nine binary treatments, 3% organic matter + 1% lime for A soil and 1% organic matter + 3% lime for both B and C soils led to the highest formation of aggregation (30.4, 25.0, and 36.5% for A, B, and C soils). For a site-application, the soil erodibility difference between the cover soils (0.045, 0.051, and 0.054 for A, B, and C soils, respectively) and the national average of arable land (0.032) was assumed to be compensated by amendment addition, which is equivalent to 29.1% aggregation formation. To achieve the aggregation goal, 5% lime for A and B soils and 3% lime for C soil were best in the consideration of benefit/cost, thereby effectively and economically reducing soil loss from sloping remediation site. Soil alkalinity induced by lime treatment was not considered in this work.

Influence of Continuous Application of Gypsum, Popped Rice Hulsl and Zeolite on Soil Aggregation of Reclaimed Silt Loam Soils (석고, 팽화왕겨 및 제오라이트 연속시용이 간척지 미사질 양토의 입단화에 미치는 영향)

  • Baek, Seung-Hwa;Kim, Jae-Yeong;Kim, Seong-Jo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2013
  • We investigated influence of continuous application of gypsum(G:$CaSO_4{\cdot}2H_2O$), popped rice hulls(H) and zeolite(Z) on soil aggregation of reclaimed silt loam soils. The application rates amended to silt loam from reclaimed soils at Saemangeum of Mangyeong were varied as follows; 1550(G1), 3100(G2), 6200 (G3) gypsum kg/10a, 1000(H1), 2000(H2), 3000(H3) popped rice hulls kg/10a, and 200(HZ1), 400(HZ2), 800(HZ3) zeolite kg/10a added to 1500 popped rice hulls kg/10a, respectively. In addition, the bermuda grass was growing, and the soil aggregates were analyzed for 60, 90 and 120 days after treatments(DAT). At 60 DAT, the effect of treatment was in order of G>H${\geq}HZ$, and the 1550kg/10a(G1) was the highest as 52.48%. At 90 DAT, the effect of treatment was also in order of G>H>HZ. Those was 3.78-3.12, 2.03-3.03 and 1.79-2.57 times in compared with the control, respectively. At 120 DAT, the effect of treatment was similar continued in order of G>H>HZ. Those was 3.00-2.20, 1.06-1.64 and 0.92-1.23 times in compared with the control, respectively. In conclusion, we found that the continuous application for two year of gypsum, popped rice hulls and zeolite was excellent above the 1 year, and the effect of the treatment for soil amendments of reclaimed silt loam soil was excellent in order of G>H>HZ.