• Title/Summary/Keyword: 토양 오염

Search Result 2,916, Processing Time 0.027 seconds

Heme 촉매반응에 의한 PCP 오염토양 복원

  • ;;D.K.Stevens
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.122-127
    • /
    • 1996
  • 본 실험은 미국 Washington 주 V 도시에서 1987년과 1908년에 PCP 유출사고로 발생된 PCP 오염토양을 처리하는 연구로 heme과 과산화수소를 이용한 abiotic 기술로 14C-PCP를 이용하여 PCP의 거동조사로 물질수지 연구와 pan 연구를 통하여 오염토양에서 PCP 제거되는 분해능을 조사하였다. $^{14}$ C-PCP를 이용한 오염토양에서 물질수지는 2g 오염토양당 0.035 g heme과 0.11g 과산화수소를 첨가하여 반응 24시간 동안 반응시킨후 완전 산화율은 20%, 토양잔류 27%, 그리고 용매상에는 38%로 총 $^{14}$ C-PCP가 회수율은 85% 이었다. PCP 유출사고로 보관된 오염토양 처리를 위한 pan 연구결과 24시간내 초기 PCP 987 mg/kg soil에서 85%가 제거되고, 서서히 분해되어 33일 에는 95% 분해능을 보여주고 있다.

  • PDF

Modeling Leaching Concentrations of Gasoline Components from Residual Gasoline in Contaminated Soil (오염토양 중 잔류가솔린의 용출농도에 대한 모델링 연구)

  • 염익태;이상현;허상철;안규홍
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.38-42
    • /
    • 1998
  • Soil venting이 오염토양중 가솔린의 용출거동에 미치는 영향을 정량적으로 예측하기 위하여 가솔린의 휘발과 용해거동이 Raoult의 법칙에 의해 설명되어 질 수 있는지를 평가해보았다. 먼저 순수 가솔린의 용해거동과 휘발거동에 대해 검토해 보고 이후 토양중 가솔린의 거동에 적용하여 보았다. 가솔린성분들의 용해거동은 휘발에 의한 성분조성의 변화와 상관없이 Raoult의 법칙에 의해 비교적 정확하게 예측될 수 있었으며 오차범위는 naphthalene을 제외하고는 최고 $\pm$ 100% 이내였다. 오염토양의 형태로 가솔린이 존재하는 경우에도 Raoult의 법칙에 의해 정확히 예측될수 있었으나 토양중 농도가 초기 20,000 mg/kg에서 1,360 mg/kg로 감소한 경우에는 용출농도가 예측치의 50-70% 수준으로 낮은 경향을 보였다. 한편 soil venting시 휘발에 따른 조성변화를 Raoult의 법칙을 이용하여 산정하고 각 성분조성에 대한 개별물질들의 용출잠재성을 결정하는 모델을 이용하여 실험결과와 비교하여 보았다.

  • PDF

토양 세척법을 이용한 하천 퇴적토 복원 설계

  • 이정산;차종철;이민희;이정민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.342-345
    • /
    • 2003
  • 비소로 오염된 폐광산주변 하천 퇴적토 오염 복원을 위한 토양세척법의 복원효율을 규명하였다. 세척액에 대한 비소제거 효율을 규명하기 위해 오염된 3종류의 하천 퇴적토에 대하여 초산, 구연산, 염산 각 0.01, 0.05, 0.1, 0.5, 1N 수용액과 증류수(pH 5.41)에 대한 세척실험을 실시하였다. 실험결과 세척 효율은 염산과 구연산 용액의 경우 0.05N 이상에서 저농도의 구연산을 제외하고 99.9% 이상의 제거효과를 나타내었다. 초산의 경우 1N의 경우에도 36%와 71%의 낮은 세척 효율을 보였으며, 증류수로 세척한 경우에는 20% 내외의 세척 효율을 나타내었다. 이러한 세척 효율은 본 오염지역의 복원목표를 토양오염 우려기준의 40% 농도(2.4mg/kg)로 설정하여 하천퇴적토를 복원할 수 있음을 나타내고 있으며, 결론적으로 오염 퇴적토의 농도 분포에 따라 적절한 세척액을 선택한다면 세척 효과를 훨씬 증대시킬 수 있으리라 사료된다. 본 연구를 통한 세척효율 결과는 연구지역을 포함한 전국 각지의 폐광산 복원공정 설계에 중요한 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

The spore densities of Arbuscular mycorrhizal fungi related to the Soils collected from Polluted and Unpolluted areas (오염지역과 비오염지역의 토양에 관한 Arbuscular mycorrhizal fungi의 포자밀도)

  • Shim, Jae-Ouk;Lee, Sang-Sun;Chang, Young-Soo
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.56-66
    • /
    • 1996
  • Ecological variations of Arbuscular mycorrhizal (AM) fungi were determined from the soils collected from different sites of the polluted and unpolluted areas related to the soil pollutions. Average 24.5 spores $(per\;20g)^{-1}$ soil of AM fungal spore were counted from the 32 sites of soils collected from On-san (polluted), whereas average 4.1 spores $(per\;20g)^{-1}$ soil from the 18 sites of those from Mt. Kwanak (polluted); Average 23.6 spores $(per\;20g)^{-1}$ soil of AM fungal spore were also counted from the 30 sites of soils collected from Chung-mu (unpolluted), whereas average 15.8 spores $(per\;20g)^{-1}$ soil from the 14 sites of those from Mt. Chungwang (unpolluted).The spores of AM fungi were the species of Glomus, Gigaspora, Acaulospora and Scutellospora. Among the above four genera, the species of Glomus were observed to be more abundant than the other genera in the soils collected from On-san, Chung-mu and Mt. Chungwang whereas the species of Gigaspora in those from Mt. Kwan-ak. The parameters of soils measured showed some variations between the polluted and unpolluted areas; 12.9 to 16.4% in the soil moisture, 5.6 to 8.3% in the organic matter and 4.3 to 5.7 at soil pH (polluted to unpolluted areas, respectively). The soils collected, thereby, appeared to be more strongly acidic and also lower in the contents of soil moisture or organic matter at the polluted area than unpolluted area. Based on the ecological criteria, the species richness or species diversity had significant differences (p<0.05) between polluted and unpolluted area. The spore density of genus Glomus or Gigaspora was significantly different (p<0.05) among the soils of three different plant vegetations (conifer plants, broad leaf plants, and grass plants). Also, there were significant differences (p<0.05) in the species evenness or species diversity among the soils referring to three different plant vegetations. There was a direct relationship $(r^2=0.38)$ between soil moisture and organic matter measured from 94 soil samples. Since there was a direct relationship $(r^2=0.22)$ between organic matter and total spores, it seems to be likely to presume that mycorrhizal spores can be increased in proportion to enhanced organic matters in soils. The species richness or species diversity was inclined to increase in proportion to enhanced soil pH and total spores in soils.

  • PDF

유류 오염 토양의 생물학적 토양복원 설계를 위한 사전 조사 및 이를 이용한 현장복원

  • 김국진;고일원;이광표;이철효
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.322-325
    • /
    • 2003
  • 본 연구에서는 경유와 윤활유로 오염된 토양에서 유류분해능이 우수한 분해균주 5종을 분리하여 동정하였고. 분리된 미생물을 이용하여 실험실 및 현장 Pilot Test 수행으로 현장 복원에 필요한 설계인자를 도출하여 실제 현장 토양복원에 적용하였다. 미생물의 투입량은 2.0 $\times$ $10^{6}$ CFU/g 이상으로 투입하고, 투입 영양분의 조성은 오염된 탄소원의 몰비 농도와 비교하여 질소원으로는 황산암모늄, 요소, 질산암모늄 등을 질소 몰수로 첨가하구 인산원으로는 인산칼륨, 이인산칼륨 등을 인산 몰수로 공급하여 토양의 C/N/P 비율이 100:10:1~ 100:1:0.5 범위 이내로 조절되도록 오염 토양에 영양분을 공급하였으며, 경작 횟수는 3회/주 이상으로 수행하여 오염토양 TPH 5,000ppm을 40일 동안 2,000ppm 이하로 복원하였으며, 이때 생분해상수 k는 0.0229/day로 확인되었다.

  • PDF

생석회(CaO)를 이용한 중금속 오염토양 안정화 효율실험

  • 이예선;차종철;이민희;김명진;박인선
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.342-345
    • /
    • 2004
  • 국내에 산재해 있는 휴ㆍ폐광산은 주변의 하천이나 농경지에 지속적인 중금속 오염원을 제공하면서 많은 문제점을 발생시키고 있다. 여러 종류의 중금속으로 오염된 토양에 대하여 안정화 공법의 적용가능성을 알아보기 위한 실험을 실시하였다. 오염토양에 적절한 복토첨가제로 생석회와 석회석을 사용하여 첨가제를 넣지 않은 dh염토양과 중금속 용출율을 비교 ㆍ분석하였다. 이 결과 안정화 첨가제들이 Cd, Pb, Zn등의 중금속 용출을 억제하는데 높은 효율을 보여줌을 확인할 수 있었으며, 첨가제를 넣지 않은 토양과 비교한 결과 약 40배 이상의 용출율 감소를 보였다. 또한 실험 시에 첨가제 각각의 함량을 1%, 2%, 5%로 설정하여 현장 적용시 복토에 첨가할 적절한 양을 산출해 낼 수 있도록 하였다. 첨가제 주입으로 인한 용출율 감소는 하나의 중금속에 국한되는 것이 아니라 여러 원소를 동시에 효과적으로 안정화시킬 수 있는 것으로 나타났다. 본 연구 결과는 오염토양에 토양안정화공법을 적용 시에 중요한 자료로 이용될 수 있을 것으로 판단된다.

  • PDF

A Case Study of Landfarming Design Procedures for Remediation of Oil-contaminated Site (유류오염지역 정화를 위한 토양경작법 설계 표준화방안)

  • Cho, Chang-Hwan;Park, Jeong-Gu;Park, Min-Gyu;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.659-666
    • /
    • 2014
  • The purpose of this study was to suggest a standard design procedure of landfarming for clean-up of oil-contaminated soils. The standard design procedure consisted of four main phases; soil characterization, determination of contaminated soil volume, determination of nutrient and microbial doses, and estimation of the total remedial period. This study selected standard design parameter values or ranges among various forms used in environmental engineer communities. Those were determination procedures for the contaminated soil volume, the initial contamination concentration and nutrient doses. The suggested standard design procedure were applied for a landfarm design for remediation of a real oil-contaminated site. Soil texture of the site was classified as sandy clay loam and sandy loam. Total nitrogen and total phosphorus were estimated to be 57.01 mg/kg and 83.40 mg/kg, respectively. Also the viable bacterial numbers was assessed to be $1.78{\times}10^4CFU/g$ dry soil. The amount of TPH contaminated soil was estimated to be $4,092m^3$. With the application of remedial factors, it was estimated that the contaminated soil could be treated through 9 batches with a duration of 315 days for a landfarming unit of $15m{\times}40m{\times}1m$. The amount of liquid microorganisms and fertilizers were recommended to be 4,025L and 4,641kg, respectively.

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.

Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil (복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구)

  • Chung, Doug-Young;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

Distribution and remediation design of heavy metal contamination in farm-land soils and river deposits in the vicinity of the Goro abandoned mine (고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계)

  • 이민희;최정찬;김진원
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.89-101
    • /
    • 2003
  • River deposits and farmland soils were analyzed to investigate the pollution level of heavy metals in the vicinity of the Goro abandoned Zn-mine. Surface (0-40 cm) and subsurface (40-100 cm) soils were collected around a main river located at the lower part of the Goro mine, and analyzed by ICP-MS for Cd, Cu, Pb, Zn and Cr after 0. 1N HCI extraction and by AAS for As after IN HCI extraction. Concentrations of cadmium and lead at the surface river deposits close to the mine were over the Soil Pollution Warning Limit (SPWL), and 43% of sample sites (6 of 14 samples) were over SPWL for As suggesting that river deposits were broadly contaminated by arsenic. Results from farmland soil analysis showed that surface soils were contaminated by heavy metals, while only arsenic was over SPWL at 50% of sampling sites. Main pollution mechanism around the Goro mine was the discharge of mine tailing and waste rocks from the storage site to the river and to adjacent farmland during flood season. Pollution Grades for sample locations were prescribed by the Law of Soil Environmental Preservation, suggesting that the pollution level of heavy metals around the Goro mine was serious, and the remediation operation fur arsenic and the isolation of mine tailing and waste rocks from river and farmland should be activated to protect further contamination. The area needed to clean up was estimated from pollution distribution data and the remediation methods such as a soil washing method and a soil improvement method were considered as the further remediation operation for arsenic contaminated soils and river deposits around the Goro abandoned mine.