• Title/Summary/Keyword: 토양 성능

Search Result 265, Processing Time 0.024 seconds

Remediation of Petroleum-Contaminated Soil by a Directly-Heated Thermal Desorption Process (직접 가열식 열탈착 공정을 이용한 유류오염토양의 정화)

  • Min, Hyeong-Sik;Yang, In-Ho;Jeon, Sang-Jo;Kim, Han-S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.62-70
    • /
    • 2009
  • A field soil highly contaminated with petroleum hydrocarbons (JP-8 and diesel fuels) was employed for its remediation by a lab-scale thermal desorption process. The soil was collected in the vicinity of an underground storage tank in a closed military base and its contamination level was as high as 4,476 ppm as total petroleum hydrocarbon (TPH). A lab scale directly-heated low temperature thermal desorption (LTTD) system of 10-L capacity was developed and operated for the thermal treatment of TPH contaminated soils in this study. The desired operation temperature was found to be approximately $200-300^{\circ}C$ from the thermal gravimetric analysis of the contaminated field soils. The removal efficiencies higher than 90% were achieved by the LTTD treatment at $200^{\circ}C$ for 10 min as well as at $300^{\circ}C$ for 5 min. As the water content in the soils increased and therefore they were likely to be present as lumps, the removal efficiency noticeably decreased, indicating that a pre-treatment such as field drying should be required. The analysis of physical and chemical properties of soils before and after the LTTD treatment demonstrated that no significant changes occurred during the thermal treatment, supporting no needs for additional post-treatments for the soils treated by LTTD. The results presented in this study are expected to provide useful information for the field application and verification of LTTD for the highly contaminated geo-environment.

Plowing Performance in the Paddy Field Spread with Rice Straw in Spring (논의 볏짚 시용(施用)이 춘계리경작업(春季犁耕作業) 성능(性能)에 미치는 영향(影響))

  • Park, Woo Pung;Kim, Soung Rai
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 1983
  • This study was conducted to find out the effects of such parameters as specific draft resistance, slip rate, and fuel consumption rate on plowing performance in paddy fields spread with chopped rice straw. The plowing operation by an 8 P.S. power tiller was carried out in 6 different fields having the soil moisture content of 27~36 percent in dry basis in clay loam soil texture, and applying chopped rice straw of 10, 20, 30 and 60cm in length in the spring of 1982. The effects of soil hardness and moisture content on the plowing performance were also investigated. The results of the study are summarized as follows; 1. The minimum draft during the plowing operation was 110kg in the 30cm rice straw plot having the soil moisture content of 32 percent in dry basis. 2. The multiple regression equation of the specific draft(D) as a function of soil moisture content(M) and cutting length of rice straw(L) was obtained as follows. $D=14.1978-0.8565M+0.0661LxM-2.9685L+0.0133M^2+1.093L^2$ 3. In the 30cm rice straw plot with the soil moisture content of 32 percent in dry basis, the minimum specific draft resistance and the rate of slip were 0.35kg per $cm^2$ and 16 percent respectively. The specific draft resistance varied sensitively in accordance with the soil moisture content, and the slip rate of power tiller was dependent upon the cutting length of rice straw rather than the soil moisture content. 4. The highest plowing performance was 5.3 ares per hour at the soil moisture content of 35 percent and soil hardness of 10kg per $cm^2$. The relationship between the plowing performance and the soil moisture content was obtained by a quadratic equation. 5. The minimum fuel consumption rate in the plowing operation was recorded 6.5 liters per 10 ares in 30cm chopped rice straw plot with the soil moisture content of 32 percent in dry basis.

  • PDF

Adsorption and Transfer of Trace Elements in Repellent Soils (토양 소수성에 따른 미량원소의 흡착 및 이동)

  • Choi, Jun-Yong;Lee, Sang-Soo;Ok, Yong-Sik;Chun, So-Ul;Joo, Young-Kyoo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.204-208
    • /
    • 2012
  • Water repellency which affects infiltration, evaporation, erosion and other water transfer mechanisms through soil has been observed under several natural conditions. Water repellency is thought to be caused by hydrophobic organic compounds, which are present as coatings on soil particles or as an interstitial matter between soil particles. This study was conducted to evaluate the characteristics of the water repellent soil and transport characteristics of trace elements within this soil. Capillary height of the water repellent soil was measured. Batch and column studies were accompanied to identify sorption and transport mechanism of trace elements such as $Cu^{2+}$, $Mn^{2+}$, $Fe^{2+}$, $Zn^{2+}$ and $Mo^{5+}$. Difference of sorption capacity between common and repellent soils was observed depended on the degree of repellency. In the column study, the desorption of trace elements and the spatial concentration distribution as a function of time were evaluated. The capillary height was in the repellency order of 0% > 15% > 40% > 70% > 100%. No water was absorbed in soil indicating >70% repellency. Using trace elements, $Fe^{2+}$ and $Mo^{5+}$ showed higher sorption capacity in the repellent soil than in non-repellent soil. The sorption performance of $Fe^{2+}$ was found to be in the repellency order of 40% > 15% > 0%. Our results found that transfer of $Mo^{5+}$ had similar sorption tendency in soils having 0%, 15% and 40% repellency at the beginning, however, the higher desorption capacity was observed as time passes in the repellent soil compared to in non-repellent soils.

Simulation of Spatio-Temporal Distributions of Winter Soil Temperature Taking Account of Snow-melting and Soil Freezing-Thawing Processes (융설과 토양의 동결-융해 과정을 고려한 겨울철 토양온도의 시공간 분포 모의)

  • Kwon, Yonghwan;Koo, Bhon K.
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.945-958
    • /
    • 2014
  • Soil temperature is one of the most important environmental factors that govern hydrological and biogeochemical processes related to diffuse pollution. In this study, considering the snowmelting and the soil freezing-thawing processes, a set of computer codes to estimate winter soil temperature has been developed for CAMEL (Chemicals, Agricultural Management and Erosion Losses), a distributed watershed model. The model was calibrated and validated against the field measurements for three months at 4 sites across the study catchment in a rural area of Yeoju, Korea. The degree of agreement between the simulated and the observed soil temperature is good for the soil surface ($R^2$ 0.71~0.95, RMSE $0.89{\sim}1.49^{\circ}C$). As for the subsurface soils, however, the simulation results are not as good as for the soil surface ($R^2$ 0.51~0.97, RMSE $0.51{\sim}5.08^{\circ}C$) which is considered resulting from vertically-homogeneous soil textures assumed in the model. The model well simulates the blanket effect of snowpack and the latent heat flux in the soil freezing-thawing processes. Although there is some discrepancy between the simulated and the observed soil temperature due to limitations of the model structure and the lack of data, the model reasonably well simulates the temporal and spatial distributions of the soil temperature and the snow water equivalent in accordance with the land uses and the topography of the study catchment.

Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model (VIC 모형을 이용하여 모의된 한반도 토양수분 자료의 분석 및 검증)

  • Cho, Eunsaem;Song, Sung-uk;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.52-62
    • /
    • 2017
  • In this study, land surface model was used to simulate the soil moisture of South and North Korea for the past 30 years, and the difference in their variation was analyzed. In addition, satellite observed soil moisture data provided by Soil Moisture CCI was analyzed to evaluate the simulation results of VIC model. For the comparison between the simulated and observed data, the CSEOF analysis was applied to indirectly assess the performance of the VIC model rather than simply comparing soil moisture values. The results of this study are summarized as follows. First, the annual variability of soil moisture showed a similar tendency in both South and North Korea, but it was found that the soil moisture in South Korea was as high as 1%, up to 7%, higher than the soil moisture in North Korea. Secondly, the soil moisture in spring between April to June is similar in South and North Korea, whereas the soil moisture after the rainy season is up to 40% in South Korea, but remains at maximum 32% in North Korea. Third, the overall simulated soil moisture is about 4% smaller than the satellite observed soil moisture, but the degree of increase over the past 30 years is similar to that of satellite observed soil moisture. Finally, a comparison of the CSEOF from the satellite observed soil moisture and the VIC model derived soil moisture showed that the soil moisture from April to June shows a much different pattern from each other. However, in July and October, there was a slight similarity, and it was confirmed that August and September has quite similar patterns.

Optimization of Row-Crop Production System on Terraced Lands (효율적인 농업기계 운용을 위한 테라스 영농시스템의 적정화)

  • ;D.R.Hunt
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.24-32
    • /
    • 1980
  • 테라스 영농지의 기계화영농에 대한 문제점은 여러 학자들에 의해서 의논되어 왔으나 비용에 의한 구체적인 조치는 거의 시도된바 없다. 본 연구에서는 적정한 테라스 영농 시스템을 구명하기 위하여 토양유실비용, 영농기계이용비용 및 테라스 축조비용을 포괄적으로 다루었다. 이를 위하여 테라스 단면의 설계와 그 축조비용의 추정, 토양유실의 예측 및 농업기계의 작업성능과 그 이용비용의 평가가 가능한 디지털 컴퓨터 모형을 개발하였다. 예시의 테라스 예정지에 대하여 반복기법을 이용하여 컴퓨터 모형을 시험한 바 테라스 영농시스템의 적정화에 만족하게 사용될 수 있음이 입증되었다.

  • PDF

Effects of Earth-Tube Characteristics on the Soil-Air Heat Exchanger Performances (지중매설관의 특성이 토양 - 공기 열교환기 성능에 미치는 영향)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 1997
  • To optimize the design and operation of a soil- air heat exchanger system, the effects of variables characterizing system design and operation on the performance of the system were analyzed by a theoretical model which included the three-dimensional transient heat conduction equation. The solution of the theoretical model was acquired by a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation, in which the time discretization scheme was an implicit difference appoximation. The computer program was validated first by comparison of the results for different grid sizes. Air outlet temperature, energy gain, and heat exchange efficiency of the system were analyzed based upon the tube diameter, tube length, tube thickness, and tube thermal diffusivity.

  • PDF

수피에 의한 폐수중의 카드뮴 이온의 제거

  • 민용원;이해익;정연호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.97-101
    • /
    • 1996
  • 산림부산물인 수피에 의한 카드뮴 이온의 선택적 흡착 현상을 이용하여 인공폐수로부터 카드뮴이온의 제거를 시도하였다. 카드뮴 이온 선택성이 우수한 소나무와 상수리 나무의 수피를 이용한 효율적인 연속식 대량 수처리 시스템의 개발을 위한 기초 실험으로 카드뮴 이온흡착 등온선을 조사하였고, batch stirred reactor, airlift reactor, packed bed column 등 여러 접촉시스템에서의 카드뮴 이온의 제거 효율을 검토하였다. 카드뮴 흡착등온선은 두 수피 모두 Langmuir 형식으로 나타났으며 소나무 수피의 최대흡착용량은 약 7 mg/g, 상수리나무 수피의 경우에는 약 8 mg/g 정도로 나타났다. Batch stirred reactor를 이용한 시스템에서 초기농도 13 ppm의 카드뮴용액 100 $m\ell$ 을 수피 10 g 과 접촉시킨 결과 30분 이내에 95% 이상 제거되는 효율성을 보여주었다. Airlift reactor를 이용한 시스템에서는 수피 30 g 을 포기농도 10 ppm 카드뮴 용액 1 liter와 접촉시킨 결과 15분 이내에 93 % 이상 제거되었으며 4 cycle 반복 운전에서도 거의 같은 성능을 유지하였고 그 이상의 cycle에서는 점점 성능이 떨어짐을 보여주었다. Packed bed column을 이용한 시스템에서는 20 g의 수피를 충전시켰을 경우 초기농도 20 ppm에서 effluent 2.5 liter 까지는 95% 정도의 제거효율을 보여주었다.

  • PDF

Effect of Carbonized Wastewoods on Soil Improvement (목질폐잔재 탄화물의 토양개량 효과)

  • 이동욱;김병로
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this study, it was examined the effect of carbonized wastewoods on soil improvement and effect of charcoal size on tree seedling growth Thuja accidentalis seedlings grow better in the charcoal-treated soil than in the non-treated soil. Especially Pinus koraiensis charcoal with good adsorption. brought the best growth result. The charcoal treatment also improved the height growth of transplanted Aesuculus turbinate seedling However charcoal sizes(i.e. powder and particle) did not affect the growth of the seedling. Also apple trees which had been suffering from rotten roots caused by root rot was recovered by application particle-sized charcoal.

  • PDF

Soil Ionization Phenomena around a Hemispherical Electrode Stressed by Impulse Voltages (임펄스전압에 의한 반구형 전극계에서 토양의 이온화 현상)

  • Heo, Dae-min;Kim, Hoe-gu;Lee, Bok-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.601-608
    • /
    • 2016
  • The electrical characteristics of the soil where a ground electrode is buried vary with regions, seasons and environmental factors. Electrical discharge in the vicinity of the ground electrode will occur differently and significantly affect the performance of the grounding system. It is necessary to analyze discharge and ionization characteristics of soils when the grounding system is designed. The aims of this investigation are to understand correlation between the soil ionization and the transient ground impedance. This paper presents the experimental results on the soil ionization parameters and the transient ground resistance due to the soil ionization around a hemispherical ground electrode stressed by lightning impulse voltages.