• Title/Summary/Keyword: 토양중의 중금속

Search Result 408, Processing Time 0.033 seconds

Distribution of Heavy metals in Soil at Iksan 1st Industrial Complex Area (익산 제 1 공단 토양의 중금속 함량 분포 조사)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun;Jang, Kwang-Ho;Kim, Su-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.48-53
    • /
    • 1998
  • The purpose of this study was to compare heavy metal concentrations in uncontaminated soil with those in soil influenced by industrial activities, and to investigate the relationship between change of heavy metal content and the kind of industry at the Iksan 1st Industrial Complex that has started since 1975. Soils sampled in 0-3㎝ and 3-6㎝ soil depth, respectively were analized for content of Cd, Cu, Ni, Pb and Zn. Change of heavy metal content in soil of the industrial complex were more accumulated 16 to 25% of Cd and Cu, 93% of Pb and Zn, respectively in samples compared with natural soil uncontaminated. But there was no different in Ni content between two soil. Distribution of Cd in soil layer of 0 to 3cm was the highest concentration of 5 ppm more at the textile industries, and then higher at the chemicals and the food processing industries. In 3 to 6㎝ soil layer Cd content was the highest concentration of 5 ppm more at the metal processing industries, and then higher at the textile industries. Cd accumulation in soil was different according to a kind of industry and soil depth. Cu content was the highest value of 400 ppm more in soil layer of 0 to 3cm at the manufacturing electric wires industry area and showed the accumulation phenomenon in soil layer 3 to 6cm at the ohmmeter, machines and electric wires industry area. Ni content was 35 ppm more in soil of the metal plating and processing industries regardless of soil sampling layer. Then it was 25 ppm more in soil of the building stones and semiconductor industries. Pb content was from 400 to 1000 ppm in soil of the chemicals and textiles industries regardless of soil sampling layer. Zn content was 1200 ppm more in soil of the chemicals and silk fabrics industries regardless of soil depth, and then lower in order to soil of leather processing${\le}$metal plating industries. In conclusion, changes of heavy metal kinds and content in soil of this industrial complex area were caused by the type or kinds of industrial activities. Changes of Pb and Zn content in soil were dominated at this area.

  • PDF

Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex (토양내 중금속 유효도와 미나리중의 흡수이행성 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • This experiment was conducted to investigate heavy metal transition and bioavailability from soil to the edible pare of water dropwort near industrial complex. The soils were collected from the paddies cultivating water dropwort stream sediments, and background soils near industrial complex. The pH values, organic matter, Av. $P_2O_5$, Ex. Ca content of paddy soils were higher than those measured for nor-contaminated paddy fields in 2003. The contents of Cd and Cu was higher than those of standard level for soil contamination by Soil Environmental Conservation Act in Korea. The pollution index in stream sediments were higher than those of paddies cultivating water dropwort. The geoaccumulation index of heavy metals in paddy soils and stream sediment were in the order Cu>Cd>Ni>Zn>Pb. The rates of 0.1N-HCl extractable heavy metals to total contents in soils were in the order Cd>Cu>Zn>Ni>Pb. In case of Cd and Ni in paddy soils near industrial complex, 0.1N-HCl extractable heavy metals and total content were highly correlated with each other. Heavy metal contents in mot parts were higher than those in top pare of water dropwort. The Zn and Cu transfer factor from soil to the top pare of water dropwort were higher than those of other heavy metals. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each elements in paddy soils.

A Study on Chemical Speciations and Leaching Potential of Heavy Metals in Polluted Wastes Soils

  • Kim Hee-Joung;Yang Jae-E;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • Fractional compositions and leaching potentials of Cd, Cu and Zn were investigated in the soils which had been disposed with the metal processing wastes, tungsten mine tailings and low quality coal mine area. Total concentrations of metals in these soils were higher than in non-polluted paddy and upland soils. Fractions of Cd, Cu and Zn were mostly reducible, organic and residual forms, but varied with origins of wastes. Residual fraction was a predominant form in the nonpolluted soils. Leaching potentials of metals were higher in polluted soils than in non-polluted soils. Metals leached were higher at pH 4.0 than 7.0 and increased with the duration time. After 25 to 35 hrs, metals released from soils reached a pseudoequilibrium. Leaching potential of metals in non-polluted soils was low due to high percentage of residual fractions.

Fractionation of Heavy Metals and Correlation with Their Contents in Rice Plant Grown in Paddy near Smelter Area (제련소 인근 논 토양 중 중금속 형태 분류 및 수도체중 중금속 함량과의 상관성)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The contents of heavy metals in soil near the Janghang smelter area were observed to understand present status and relationship between their fraction and the absorption by rice. The soil samples were taken from the eight sites of the paddy fields in 1982 and 1990, and analysis on heavy metals including Cd, Zn, Cu and Pb was performed. The results were as follows: Total contents of heavy metals in the samples of 1990 were higher than those of 1982. The order of increasing ratio was Cu > Zn > Pb > Cd and the variation of Cd content by sequential differente extracting was residual > exchangeable > dilute acid-extractable fractions and its increasing range was from 38 to 71% during nine years. The ratio of immobile heavy metals bound within an oxide or silicate matrix of Fe-Mn oxide bound and residual in surface soil was that Cd, Pb, Cu and Zn were 31.65, 42.22, 76.57 and 79.49%, respectively, and their mobile ratios of exchangeable, dilute acid-extractable and organically bound were more than 20.28%. Those of mobile Cd, Pb, Cu and Zn were 68.35, 55.78, 23.43 and 20.28%, respectively. Correlation between the heavy metal contents in surface soil and those in tissue of rice plant, such as leaf blade, leaf sheath, stem and panicle axis, were significant, but were not significant in subsurface soil. The dilute acid-extractable and organically bound fractions of Cd, Cu, Pb and Zn in surface soil were more significantly correlated with those in tissues of paddy rice.

  • PDF

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects (중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망)

  • Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.399-422
    • /
    • 2020
  • Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environment-friendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growth-promoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

A Study on Removal of Heavy Metals (Cu, Zn, and Pb) from Contaminated Soil by Soil Washing (토양세척에 의한 오염토양의 중금속(Cu, Zn, Pb) 제거에 관한 연구)

  • Kim, Myoung-Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.509-520
    • /
    • 2013
  • In this study, heavy metals are removed by soil washing from soils contaminated with Cu, Zn, and Pb, whose maximum concentrations are up to 3350, 1220, and 2240 mg/kg, respectively. Through various soil washing experiments, the optimum conditions, including type and concentration of washing reagent, washing time, mixing ratio of soil and washing reagent, and stirring speed, are derived for effective removal of the heavy metals. It is found that the most effective washing reagent and its concentration are hydrochloric acid and 50 mM, respectively. The most suitable washing time is 30 minutes and the optimal mixing ratio of soil and washing reagent is 1:30 (g/mL). The removal efficiency, on the other hand, is not affected by stirring speed. The removal efficiencies of the heavy metals decrease when washing reagent is reused. Furthermore, the heavy metals are readsorbed onto soil in case of consecutive reuse of washing reagent.

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

Sequential Fractionation of Heavy metals from Mine Tailings and Two Series of Agricultural Soils (광미장과 두개의 농업토양통 토양으로 부터의 중금속의 연속 분획)

  • Chung, Doug-Young;Lee, Do-Kyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • In order to investigate the contamination characteristics of the heavy metals in the mine tailings of abandoned gold mine and its surrounding agricultural soils, a sequential extraction procedure of increasing reactivity in the dissolution processes of the heavy metals(Cd, Cu, and Pb) which were associated with solid and/or solution phase in soils was attempted to partition into six particulate fractions : exchangeable, bound to carbonate, bound to Fe-Mn oxides, bound to organic matter, residual, and soluble. Among indigenous heavy metals in the mine tailings, Pb was the most abundant and Cu and Cd were followed by. Fractionation result of Pb obtained from the triplicate samples of the mine tailings were in the order of Fe-Mn oxide> Carbonate> Residual> Organic> Exchangeable> Soluble, while Wolgok series were Exchangeable > Fe-Mn oxide > Carbonate> Organic> Residual> Soluable. However the other heavy metals studied were not followed this trend. The fractionation results of mine tailing and agricultural soils demonstrated that different geochemical fractions were operationally defined by an extraction sequence that generally followed the order of decreasing solubility. Therefore potential mobility and bioavailability of heavy metals as toxic pollution sources can be evaluated when studying the pollution levels of heavy metals in soils.

  • PDF

Long-term Characteristics of Heavy Metal Contamination in Highway Roadside Soil and Sediment (고속도로변 토양과 퇴적물의 중금속 장기 오염 특성)

  • Lee, Eui-Sang;Lee, Ju-Goang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.385-394
    • /
    • 2007
  • To study long-term characteristics of the heavy metal contamination, soil and sediment samples were collected at 14 sites in highway roadside during 6 years. The total concentrations of metals including Zn, Ni, Cu. Pb, Cr, Cd, and As in those samples were investigated. The results indicate that concentrations of Zn, Ni, and Cu in highway roadside soils are much higher than the metal concentrations in background soils and appear to be increased gradually. Strong linear relationships between the cumulative traffic and the contents of the metals in highway roadside soils were obtained. Therefore, they might be used to predict the heavy metal concentrations in the future highway roadside soils for establishing the countermeasure of soil and sediment contamination.

  • PDF