• 제목/요약/키워드: 토양조건

검색결과 2,365건 처리시간 0.031초

무경운(無耕耘) 파종기용(播種機用) 구체기(溝切器)의 견인특성(牽引特性)에 관(關)한 연구(硏究) (Study on the Tractive Characteristics of the Seed Furrow Opener for No-till Planter)

  • 나우정
    • 농업과학연구
    • /
    • 제5권2호
    • /
    • pp.149-157
    • /
    • 1978
  • 동력경운기용(動力耕耘機用) 두류(豆類)의 무경운(無耕耘) 파종기(播種機)에 부착(附着)하여 사용(使用)하는 구절기중(溝切器中)에서 소요색인력(所要索引力)이 작고 구절작업정도(溝切作業精度)가 양호(良好)한 구절기(溝切器)의 개발(開發)을 위(爲)한 기초자료(基礎資料)를 얻기 위(爲)하여 구동식(驅動式) 토조(土槽)에 인공토양(人工土壤)을 채우고 원판형(圓板型) 및 호우형(型) 구절기(溝切器)의 소요색인력(所要索引力)과 이에 영향(影響)을 미치는 인자(因子)들과의 관계(關係)를 구명(究明)코자 실내모형(室內模型) 실험(實驗)을 실시(實施)하여 다음과 같은 결과(結果)를 얻었다. 원판형(圓板型) 구절기(溝切器)에 대(對)하여 직경별(直徑別)로 조립각(組立角)을 $8^{\circ}$$16^{\circ}$, 경심(耕深)을 3cm와 6cm로 변화(變化)시키년서 2.75cm/sec의 속도(速度)로 색인력(索引力)을 측정(測定)한 결과(結果) 원판(圓板)의 직경(直徑)이 약(約) 28cm인 경우(境遇)에 색인력(索引力)이 최소(最少)로 나타났고, 직경(直徑)이 이보다 크거나 작은때는 색인력(索引力)은 증가(增加)하는 경향(傾向)을 나타냈으며 비저항(比抵抗)도 대체(大體)로 비슷한 경향(傾向)이었으나 원판(圓板)의 직경(直徑)이 약(約) 30cm일 때 최소(最少)로 나타났다. 종자파종(種子播種)의 심도조절(深度調節)을 목적(目的)으로 작구심(作溝深)(3cm 및 6cm)과 색인력(索引力)과의 관계(關係)를 조사(調査)하였던 바, 경심(徑深)과 색인력(索引力)과의 관계(關係)는 거의 직선적(直線的)인 변화(變化)를 나타냈으며 색인력(索引力)에 영향(影響)을 미치는 인자중(因子中)에서 경심(耕深)의 영향(影響)이 가장 컸음을 알 수 있었다. 일반적(一般的)으로 조립각(組立角) 및 주행속도(走行速度)에 별(別) 영향(影響)없이 경심(耕深) 3cm 및 6cm 공(共)히 색인력(索引力)은 직경(直徑) 약(約) 28cm에서, 비저항(比抵抗)은 약(約) 30cm에서 최소(最少)의 값을 나타내었다. 파종기(播種機)의 작업성능(作業性能)과 관계(關係)가 갚은 주행속도(走行速度) 및 파건(播巾)의 조절(調節)을 목적(目的)으로 원판(圓板)의 조립각(組立角)과 주행속도(走行速度)가 색인력(索引力)에 미치는 영향(影響)을 조사(調査)했던 바, 조립각(組立角)과 주행속도(走行速度)가 증가(增加)함에 따라 모두 색인력(索引力)이 증가(增加)하는 경향(傾向)을 나타내었으나 색인력(索引力)에 미치는 영향(影響)은 주행속도(走行速度)가 더욱 크게 나타났다. 원판형(圓板型) 구절기(溝切器)와 호우형(型) 구절기(溝切器)를 비교(比較)하기 위(爲)하여 쐐기각(角)이 $16^{\circ}$이고 리프트각(角)이 $20^{\circ}$인 호우형(型) 구절기(溝切器)와 조건(條件)이 비슷한 조립각(組立角) $16^{\circ}$의 원판형(圓板型) 구절기(溝切器)의 색인특성(索引特性)을 비교(比較)한 결과(結果) 직경(直徑) 30cm인 원판형(圓板型)의 경우(境遇)는 비저항(比抵抗)이 $0.35{\sim}0.5kg/cm^2$인데 비(比)해 호우형(型)의 경우(境遇)는 $0.71{\sim}1.02kg/cm^2$로 나타나 호우형(型)의 색인비저항(索引比抵抗)이 평균(平均) 2배정도(倍程度) 크게 나타났고 작구상태(作溝狀態)도 원판형(圓板型)의 경우(境遇)보다 불량(不良)하였다.

  • PDF

조건 불리 한계농경지에서의 조, 수수, 기장의 생육 및 수량 (Growth and Yield Characteristics of Foxtail Millet, Comon Millet Cereal Crops on Marginal Agricultural Lands)

  • 윤성탁;이명철;김정순;장경우;허진우;김영복;김태호;남중창;남민희;이용환;황재복;심상인;김성민
    • 한국작물학회지
    • /
    • 제55권4호
    • /
    • pp.350-356
    • /
    • 2010
  • 경사도가 높거나 농지의 지형적 토성적 이유로 농기계의 작업효율이 낮은 한계경지는 산간지역에 많이 분포하고 있어 이와 같은 불량환경에 적응성이 큰 조, 기장, 수수의 생육 및 수량특성을 검정하여 한계경지 적응 적정 작목 및 품종을 선발코자 실시한 연구결과는 다음과 같다. 1. 토양 pH는 평탄지인 대조구가 7.85로 약 알카리성을 나타내었으며, 경사지 및 척박지는 각각 6.3, 6.2로 약산성을 나타내었으나, 자갈밭은 5.1로 강한 산성을 나타내었다. EC는 대조구에 비해 한계농경지(경사지, 척박지, 자갈밭)가 낮았으며, 특히 척박지는 0.05 dS $m^{-1}$로 가장 낮았다. 2. 조의 한계경지별 출수기 및 성숙기는 큰 차이가 없었다. 간장은 경사지에서 169.5 cm로 가장 컸으며, 자갈밭이 143.7 cm로 가장 작았다. 1수립수는 대조구를 제외하면 경사지가 4913.9립으로 많았으며, 3.3 $m^2$당 이삭수는 자갈밭이 85.3이삭으로 대조구에 비해 25% 적었다. 품종별 생육기간은 3품종 모두 112~113일로 차이가 없었다. 3. 기장의 파종기로부터 출수소요일은 한계경지간 큰 차이가 없었으며, 1수립수는 경사지가 787.1립으로 대조구 다음으로 가장 많았다. 품종간 1수립수는 벼룩기장이 827.2개로 가장 많았으나, 1000립중은 5.5g으로 황기장 6.2g에 비해 작았다. 4. 한계경지별 수수의 출수기 및 성숙기는 큰 차이가 없었다. 1수립수는 대조구와 경사지가 각각 2598.1, 2563.8개로 가장 많았으며, 이삭수도 대조구와 경시지가 각각 26.7, 26.0이삭/3.3 $m^2$으로 가장 많았다. 품종별 생육기간은 3품종 모두 122~123이로 큰 차이가 없었으며, 1수립수는 목탁수수가 2357.6립으로 가장 많았으며, 메수수가 2071.8개로 가장 적었다. 1000립중은 장목수수가 23.8g으로 가장 무거웠다. 5. 조의 수량은 대조구가 295 kg/10a으로 가장 많았으며, 다음으로는 경사지가 282.0 kg/10a으로 많았다. 품종별로는 몽당조가 252.3 kg/10a으로 수량이 가장 많았다. 기장의 수량은 대조구가 217.0 kg/10a으로 가장 많았으며, 다음으로는 경사지가 196.0 kg/10a으로 많았다. 품종별로는 벼룩기장이 173.8 kg/10a으로 가장 많았으며, 흰기장이 122.2 kg/10a으로 수량이 가장 낮았다. 수수의 수량은 대조구가 313.0 kg/10a으로 가장 많았으며, 다음은 경사지가 301.7 kg이었으며, 품종별로 는 목탁수수가 236.5 kg/10a로 가장 수량이 많았다.

참깨의 발아특성(發芽特性)에 관(關)한 연구(硏究) (Studies on the Germination Characteristics of Sesame (Sesamum indicum L.))

  • 김충수
    • 농업과학연구
    • /
    • 제10권1호
    • /
    • pp.28-60
    • /
    • 1983
  • 본(本) 연구(硏究)는 참깨종자(種子)의 발아(發芽)에 미치는 온도(溫度), 수분(水分), 산소(酸素) 및 관(光) 등(等)의 외적(外的) 조건(條件)의 영향(影響) 발아진행중(發芽進行中)의 종자내(種子內) 물질변화(物質變化)를 구명(究明)하고져 수행(遂行) 되었던 바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. $35^{\circ}C$부터 $5^{\circ}C$ 간격(間隔)으로 $20^{\circ}C$까지는 평균(平均) 95.8~97.2%의 발아율(發芽率)을 보였고 이들 온도간(溫度間)에는 평균발아율(平均發芽率)의 유의차(有意差)가 인정(認定)되지 않았으나 $15^{\circ}C$에서는 발아율(發芽率)의 급격(急激)한 감소(減少)를 보여 평균(平均) 32.2% 발아(發芽)되었고 이때 변이계수(變異係數)는 77%였다. 2. 온도(溫度)에 따르는 발아소요일수(發芽所要日數)는 $35{\sim}25^{\circ}C$에서 평균(平均) 1.16~1.64일(日)이었으며 $20^{\circ}C$에서는 3.07일(日)이었고 $15^{\circ}C$에서는 10.40일(日)이었다. 3. 발아율(發芽率) 및 발아소요일수(發芽所要日數)를 감안(勘案)할때 $15^{\circ}C$가 참깨종자(種子)의 발아한계온도(發芽限界溫度)였으며 참깨 종자(種子)의 저온발아성(低溫發牙性) 검정(檢定)에 가장 효과적(效果的)인 온도(溫度)로 고려(考慮)되었다. 4. Shirogoma, Turkey등(等)이 가장 저온발아성(低溫發牙性)이 높았고 수원(水原)29호(號), 내복, IS58이 그 다음이었으며, 70~80%의 비교적(比較的) 높은 발아율(發芽率)을 보이는 품종(品種)들이 매포, 수원(水原)14호(號), 김포, 문덕, 해남이었는데, 이들 저온발아성(低溫發牙性)이 비교적(比較的) 높은 품종(品種)은 전공시품종(全供試品種)(90품종(品種))의 10%였으며 이들중 70%는 국내품종(國內品種)이었다. 5. $12^{\circ}C$에서 Shirogoma만 50% 이상(以上)의 발아율(發芽率)을 보였으며 대부분(大部分) 20%미만(未滿)의 낮은 발아율(發芽率)을 보였는데 파종후(播種後) 18일(日)에 온도(溫度)를 $27^{\circ}C$로 상승(上昇)시켰던바 2일이내(日以內)에 전품종(全品種)에서 90% 이하(以上)의 발아율(發芽率)을 보였으며 변온처리(變溫處理)에 따르는 품종간(品種間) 발아율간(發芽率間)에는 유의차(有意差)가 없었고 발아소요일수(發芽所要日數) 간(間)에는 청송, 의상천, 산동, 마산 등은 현저(顯著)히 소요일수(所要日數)가 길었다. 6. 발아(發芽)에 필요한 흡수율(吸水率)은 $25^{\circ}C$적습하(適濕下)에서 48%내지 62%로서 품종간(品種間)에 현저(顯著)한 차이(差異)를 나타내었다. 또한 치상후(置床後), 2시간에 발아(發芽)에 소요(所要)되는 전체 수분(水分)의 63% 정도가 흡수(吸收)되었다. 7. 포화수분하(飽和水分下)에서는 전공시품종(全供試品種)에서 평균발아율(平均發芽率)이 0.42%였고 -0.4bar에서는 64.8%였으며 -0.4~-5.5bar에서 가장 발아율(發芽率)이 높았고 이보다 토양수분(土壤水分)이 부족(不足)할 경우 발아율(發芽率)은 거의 직선적(直線的)인 감소(減少)를 보였다. 8. 10개(個) 공시품종중(供試品種中) 6개공시품종(個供試品種)에서는 5%의 산소하(酸素下)에서 발아(發芽)에 영향(影響)을 받지 않았으나 예천, PI158073, IS103, 의상천의 4품종(品種)은 산소농도(酸素濃度) 5%에서는 발아율(發芽率)이 64~91%로 저하(低下)되었다. 또한 무산소하(無酸素下)에서는 하배축(下胚軸)만 출현(出現)하였을뿐 자엽(子葉)의 출현(出現)은 없었으며 하배축(下胚軸) 출현(出現)은 IS103이 현저(顯著)히 낮았다. 9. 청송, Early Russian 및 수원(水原)9호(號)는 12시간(時間) 흡습(吸濕)시킨 후(後) 24시간(時間) 건조(乾燥)시킬때 청송만 27.5%의 발아율(發芽率)을 보였고 수원(水原)9호(號) 및 Early Russian은 전혀 발아(發芽)되지 않았으며 IS103은 4시간 흡습후(吸濕後) 24시간(時間) 건조시(乾燥時) 발아율(發芽率)이 감소(減少)되었는데 24시간(時間) 흡습후(吸濕後) 24시간(時間) 건조시(乾燥時)에도 32.5%의 발아율(發芽率)을 보였다. 10. 발아(發芽)의 진행(進行)에 따라 종자내(種子內) 당함량(糖含量)은 급격(急激)한 증가(增加)를 보였으나 전분함량(澱粉含量)은 현저(顯著)히 감소(減少)되었으며 ${\alpha}$-amylase의 활성도(活性度)는 점증(漸增)되었는데 이들 증감정도(增減程度)는 $25^{\circ}C$에 비해 $15^{\circ}C$에서는 현저(顯著)히 낮았다. 11. 발아(發芽)가 진전(進展)됨에 따라 종자(種子)의 지질함량(脂質含量)은 급격(急激)한 감소(減少)를 보였고 alkaline lipase의 활성도(活性度)는 특히 발아초기(發芽初期)에 더욱 급격(急激)한 증가(增加)를 보였는데 지질(脂質)의 감소정도(減少程度)와 alkaline lipase의 활성도(活性度) 증가정도(增加程度)는 $25^{\circ}C$에 비해 $15^{\circ}C$에서 현저(顯著)히 낮았다. 12. 6개공시품종중(個供試品種中) 4개공시품종(個供試品種)의 발아(發芽)에는 광파장(光波長)의 영향(影響)을 받지 않았으나 수원(水原)8호(號)는 600~650nm에서 IS103은 600~650nm, 500~550nn에서 현저(顯著)히 발아율(發芽率)이 저하(低下)되었으며 수원(水原)8호(號)는 600~760nm 및 500~560nm에서, IS103은 400~470nm 및 암흑상태(暗黑狀態)에서 높은 발아율(發芽率)을 보였다. 13. 100입중(粒重)이 무거운 종자(種子)에서 각(各) 품종(品種)의 발아율(發芽率)이 현저(顯著)히 높았으며 파종심도(播種深度) 4 cm 하(下)에서는 청송 및 Early Russian은 전혀 자엽(子葉)이 출현(出現)되지 않았던 반면(反面), 수원(水原)9호(號) 및 IS103은 각각(各各) 32.5 및 50%의 발아율(發芽率)을 보였다. 또한 참깨의 지상부(地上部), 지하부(地下部) 및 재배지토양(栽培地土壤) 추출물(抽出物)은 발아(發芽)에 전혀 영향(影響)을 미치지 않았다. 14. 무피복구(無被覆區)에 비해 흑색(黑色) 및 투명(透明) polyethylene film 피복구(被覆區)에서 발아율(發芽率)이 현저(顯著)히 높았고, 발아소요일수(發芽所要日數)는 현저(顯著)이 단축(短縮)되었으며 또한 초기생육(初期生育) 및 주당삭수와 주당수량(株當收量)이 현저(顯著)히 증가(增加)되었는데 polyethylene film의 종류간(種類間)에는 유의차(有意差)가 인정(認定)되지 않았으나 흑색(黑色)polyethylene film보다는 투명(透明) polyethylene film이 약간(若干) 더 효과적(效果的)인 경향(傾向)이었다. 15. 심천, 청송, 수원(水原)9호(號), PI158073 및 IS103은 수분흡수율(水分吸收率)이 현저(顯著)히 낮았고 흡습후(吸濕後) 종자중(種子重)의 증가(增加)는 수원(水原)8호(號), 수원(水原)26호(號), Orotall 및 의상천이 현저(顯著)히 컸다.

  • PDF

벼생유기간중의 논에서의 분석소비에 관한 연구(II) (Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III))

  • 민병섭
    • 한국농공학회지
    • /
    • 제11권4호
    • /
    • pp.1775-1782
    • /
    • 1969
  • 벼의 생육기간중(生育期間中) 논에서의 수력소비(水力消費)에 관(關)하여 연구(硏究)하였던바 다음과 같은 결론(結論)을 얻었다. 1. 엽면(葉面) 및 주간수면증발(株間水面蒸發) 1) 벼의 엽면증발량(葉面蒸發量)은 조(早), 중(中), 만생종(晩生種) 공(共)히 이앙(移秧)후 점차(漸次) 증가(增加)하다가 수잉기(穗孕期)에 급증(急增)하고 수잉기(穗孕期) 말기(末期)에서 출수개화(出穗開花) 초기(初期)(조생종(早生種)은 제6기(第6期), 중(中), 만생종(晩生種)은 제7기(第7期)에 최대량(最大量)에 달(達)하며 그 후 점감(漸減)한다. 2) 벼의 엽면증발작용(葉面蒸發作用)은 조(早), 중(中), 만생종(晩生種) 모두 제5기(第5期)까지는 별(別) 차이(差異)가 없으며 제6기(第6期)에는 조생종(早生種)이 가장 왕성(旺盛)하고 제7기(第7期) 이후(以後)는 만생종(晩生種)이 계속(繼續) 제일(第一) 왕성(旺盛)하다. 3) 엽면증발(葉面蒸發)이 가장 왕성(旺盛)한 시기(時期)인 제6기(第6期) 조생종(早生種)와 제7기(第7期)(중(中), 만생종(晩生種)의 엽면증발량(葉面蒸發量)은 전(全) 생육기간(生育期間)의 총엽면증발량(總葉面蒸發量)의 $15{\sim}16%$에 달(達)한다. 4) 벼의 엽면증발(葉面蒸發)은 그 생리작용(生理作用)에 기인(起因)하느니만큼 엽면증발량산정(葉面蒸發量算定)의 기준계수(基準係數)로는 증산강도(蒸散强度)를 채택사용(採擇使用)함이 타당(妥當)하다고 본다. (표(表)7) 5) 이 시험(試驗)에서 공시(供試)한 벼의 엽면증발량(葉面蒸發量)이 최대(最大)로 되는 출수개화(出穗開花) 초기(初期)까지의 각품종(各品種)의 엽면증발량(葉面蒸發量)을 산정(算定)할 수 있는 수식(數式)은 다음과 같다. 조생종(早生種) ; Y=0.658+1.088x 중생종(中生種) : Y=0.780+1.050x 만생종(晩生種) : Y=0.646+1.091x 7) 논 에서의 주간수면증발량(株間水面蒸發量)은 그림-1, 2에서 보는바와 같이 엽면증발량(葉面蒸發量)과 고도(高度)의 부(負)의 상관관계(相關關係)가 있음을 알 수 있다. 8) 주간수엽증발량(株間水面蒸發量)은 증발계(蒸發計) 증발량(蒸發量)에 대(對)한 비(比)(표(表) 11)로 산정(算定)할 수도 있고 표(表)-10에 의거(依據)하던가 또는 주간수면증발량(株間水面蒸發量)이 최소(最少)로 되는 시기(時期)(조생종(早生種)은 이 시험(試驗)에 공시(供試)한 품종(品種)에 대(對)해서 다음 수식(數式)으로 산정(算定)할 수도 있다. 조생종(早生種) : Y=4.67-0.58x 중생종(中生種) ; Y=4.70-0.59x 만생종(晩生種) : Y=4.71-0.59x 9) 엽(葉), 수면증발량(水面蒸發量)의 생육기별(生育期別) 변화상황(變化狀況)은 엽면증발량(葉面蒸發量)의 그것과 그 경향(傾向)이 동일(同一)하며 조생종(早生種)은 제6기(第6期)에 중(中), 만생종(晩生種)은 제7기(第7期)에 최대(最大)로 된다. 10) 논 에서의 엽(葉), 수면증발량(水面蒸發量)은 표(表)-12에 의(依)하거나 증발산강도(蒸發散强度)(표(表)14)에 의(依)하여 산정(算定)할 수 있으며 엽(葉), 수면증발량(水面蒸發量)이 최대(最大)로 되는 시기(時期)까지의 양(量)은 이 시험(試驗)에서 공시(供試)한 품종(品種)에 대(對)해서 다음 수식(數式)으로 산정(算定)할 수 있다. 조생종(早生種) : Y=5.36+0.503x 중생종(中生種) : Y=5.41+0.456x 만생종(晩生種) : Y=5.80+0.494x 11) 전(全) 생육기간(生育期間)의 엽(葉), 수면증발량(水面蒸發量)의 증발계(蒸發計) 증발량(蒸發量)에 대(對)한 비(比)는 조생종(早生種)은 1.23, 중생종(中生種)은 1.25, 만생종(晩生種)은 1.27이었다. 12) 우리 나라의 기상조건하(氣象條件下)에서 무강우일(無降雨日)의 관측식(觀測植)만을 처리(處理)한 경우 벼 전생육간기(全生育間期)을 통(通)하 엽(葉), 수면증발량(水面蒸發量)과 제(諸) 기상요소(氣象要素)와의 관계(關係)는 기온(氣溫)만이 고도(高度)의 상관성(相關性)을 보여주고 있다. 2. 삼투량(渗透量) 1) 관개계획(灌漑計劃) 용수량산정(用水量算定)을 위한 삼투량(渗透量)은 보수일(保水日)에 의거(依據)함이 타당(妥當)하다고 본다. 3. 유효우량(有效雨量) 1) 벼생육기간중(生育期間中)의 각(各) 기별(期別) 유효우량(有效雨量)과 유효율(有效率)은 표(表) 18과 같다. 2) 벼의 전생육기간(全生育期間)의 유효율(有效率)은 $65{\sim}75%$를 기준(基準)으로 함이 타당(妥當)하다고 본다. 3) 평년(平年)의 벼의 전생육기간중(全生育期間中)의 유효우량(有效雨量)은 550mm 정도(程度)로 추정(推定)된다. 4. 벼의 엽면증발(葉面蒸發)이 삼투(渗透)에 미치는 영향(影響) 1) 벼뿌리의 흡수작용(吸水作用)은 삼투(渗透)에 영향(影響)을 미치며 그 작용(作用)이 왕성(旺盛)할수록 삼투량(渗透量)은 감소(減少)한다. (표(表) 21, 표(表) 22) 2) 벼를 재식(栽植)한 경우 그 생육기간중(生育期間中) 오전(午前) 및 후간(後間)과 오후(午後)와는 그 삼투량(渗透量)이 판이(判異)한 현상(現象)을 보이며 오전(午前)과 후간(後間)은 이식(移植)후 점증(漸增)하여 7월하순(月下旬) 또는 8월상순(月上旬)(수온(水溫), 지온(地溫)이 최고시기(最高時期)에 최대(最大)로 되고 그 이후(以後)는 감소(減少)하는데 대(對)해 오후(午後)는 정반대(正反對)로 이식후(移植後) 점차(漸次) 감소(減少)하여 8월(月) 중순(中旬)(수잉기(穗孕期)) 후기(後期)에서 출수개화초기(出穗開花初期)에 최소(最少)로되고 그 후 점증(漸增)한다. 3) 주간삼투량(晝間渗透量)은 이식후(移植後) 엽면증발량(葉面蒸發量)의 증가(增加)와 더부러 점차(漸次) 감소(減少)하지만 수잉기(穗孕期) 말기(末期)에서 출수개화(出穗開花) 초기(初期)에는 급감현상(急減現象)이 나타나고 8월(月) 하순(下旬)에는 다시 급증(急增)하고 9월(月) 중순(中旬)은 9월(月) 상순(上旬)보다 지온(地溫)이나 수온(水溫)이 낮은 데도 불구(不拘)하고 삼투량(渗透量)은 오히려 증가(增加)하는데 이는 9월중순(月中旬)에 이르면 벼뿌리의 흡수작용(吸水作用)이 크게 감퇴(減退)함에 기인(起因)하는 것으로 추정(推定)된다. 4) 일(日) 삼투량(渗透量)의 생육기간중(生育期間中)의 변화상황(變化狀況)을 보면 이식후(移植後) 점증(漸增)하여 7월하순(月下旬)에 최대(最大)로 되고 그 이후(以後) 감소(減少)하였다가 8월하순(月下旬)(등숙기(登熟期))에 다시 증가(增加)하고 그 후 다시 감소(減少)하는 다소(多少) 변동(變動)이 심(甚)한 현상(現象을 보여주고 있는데 이는 수온(水溫)이나 지온(地溫)의 영향(影響(야간(夜間), 오전(午前))과 아울러 벼뿌리의 흡수작용(吸收作用)이 복합적(複合的)으로 영향(影響)을 미치는 결과(結果)라고 본다. 5) 주간삼투량(晝間渗透量)은 엽면증발량(葉面蒸發量)과 부(負)의 고도(高度)의 상관성(相關性)을 인정(認定)할 수 있다. 야간삼투량(夜間渗透量)은 수온(水溫)이나 지온(地溫)의 영향(影響)이 지배적(支配的)이고 엽면증발(葉面蒸發)의 영향(影響)은 거의 없으며 일(日) 삼투량(渗透量)은 엽면증발(葉面蒸發)보다 그 이외(以外)의 요인(要因)의 영향(影響)이 보다 큰 것으로 생각된다. 6) 야간삼투량(夜間渗透量)과 수온(水溫)이나 지온간(地溫間)에는 고도(高度)의 정(正)의 상관성(相關性)이 인정(認定)되는데 대(對)해 오전(午前)과 오후(午後)의 삼투량(渗透量)과 수온(水溫)이나 지온간(地溫間)에는 상당성(相當性)을 인정(認定)할 수 없다. 7) 벼를 재식(栽植)한 포트의 일(日) 침투량(浸透量)과 재치(裁値)하지 않는 포트에서의 일삼투량간(日渗透量間)에는 $r={\div}0.8382$란 고도(高度)의 상관성(相關性)을 인정(認定)할 수 있다. 8) 벼의 전생육기간(全生育期間)을 통(通)한 총삼투량(總渗透量)은 벼의 엽면증발(葉面蒸發)에 의(依)한 영향(影響)보다는 토양고유(土壤固有)의 삼투성(渗透性)이나 수온(水溫), 지온(地溫)등 벼뿌리의 흡수작용(吸收作用) 이외(以外)의 다른 요인(要因)들이 보다 더 영향(影響)을 미친다고 여겨진다.

  • PDF

점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향 (Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field)

  • 김철기
    • 한국농공학회지
    • /
    • 제15권3호
    • /
    • pp.3059-3088
    • /
    • 1973
  • 본연구(本硏究)에서는 연구(硏究)의 대상(對象)을 저습답(低濕畓)에 두기보다는 지하수위(地下水位)가 낮은 점질토(粘質土)의 건답(乾畓)에 두고 이 점질토(粘質土)논에 대(對)한 수잉전(移秧前)의 처리(處理)에 있어서 심경(深耕)을 한 것 답면(畓面)을 건조(乾燥)시켜 구열발달(龜裂發達)을 기(期)하게한 것 및 암거(暗渠)가 설치(設置)된 곳에서의 답면(畓面)을 건조(乾燥)시켜 구열발달(龜裂發達)을 기(期)하게 한 것 중에서 어떤 처리방법(處理方法)을 적용(適用)한 것이 뿌리신장(伸長)이 심층화(深層化)되여 벼의 수량(收量)을 높일 수 있고 동시(同時)에 지하배수기능(地下排水機能)이 제대로 발휘(發揮)되여 수확작업(收穫作業)에 대형기계(大型機械)를 도입(導入)하였을 때 농업기계(農業機械)의 주행성면(走行性面)에서 유리(有利)한가를 발견(發見)코저 한 것이다. 그래서 시험구처리(試驗區處理)에 있어서는 (1)이앙(移秧) 39일전(日前)에 경운(耕耘)하여 풍건(風乾)시킨 것(경운구(區)) (2) 이앙(移秧) 39일전(日前)에 경운(耕耘)하여 물로 포화(飽和)시켜 쓰린후(後) 구열(龜裂)을 발생(發生)시켜 이앙(移秧) 2일전(日前)에 15cm 깊이로 경운(耕耘)한 것(균열구(區)) (3) 이앙(移秧) 39일전(日前)에 암거설치(暗渠設置)와 동시(同時)에 경운(耕耘)하여 물로 포화(飽和)시켜 쓰린후(後) 구열(龜裂)을 발생(發生)시켜 이앙(移秧) 2일전(日前)에 15cm 깊이로 경운(耕耘)한 것(균암구(區))의 3요인(要因)에 15cm. 25cm, 35cm 깊이의 3수준(水準)으로 하고 15cm 깊이 경운구(區)를 Control구(區)로 정(定)하였는데 이에 의(依)하여 얻은 시험결과(試驗結果)는 대략(大略) 다음과 같이 요약(要約)될 수 있다. 1. 소비수량(消費數量)은 균암구(區)에 있어서는 경운구(區) 및 균열구(區)보다도 소비수량(消費水量)을 나타냈다. 따라서 유효우량은 균암구(區)에서 가장 크고 경운구(區), 균열구(區)의 순(順)으로 작은값을 나타냈고 순용수량(純用水量)에 있어서는 여전(如前)히 균암구(區), 경운구(區), 균열구(區)의 순(順)으로 작어저 균암구(區)가 가장 큰 양(量)을 나타냈다. 심도(深度)에 불구(不拘)하고 순용수량(純用水量)의 크기는 균암구(區)에서 105cm 내외(內外), 경운구(區)에서 70cm 내외(內外), 균열구(區)에서는 45cm 내외(內外)를 나타냈다. 2. 뿌리중량(重量)이 구열최대심도(龜裂最大深度)에 예민(銳敏)하게 영향(影響)을 받고 있는 경향(傾向)으로 미루어 볼 때 뿌리 발달(發達)은 답면상(畓面上)의 구열(龜裂)에 의(依)하기 보다는 구열심도(龜裂深度)에 더 큰 영향(影響)을 받는 것으로 되어 있다. 따라서 깊은구(區)일수록 뿌리중량(重量)은 커지는 경향(傾向)을 가졌고 처리간(處理間)에는 균열구(區), 균암구(區), 경운구(區) 순(順)으로 증대(增大)하는 경향(傾向)을 가졌다. 3. 초장(草丈)의 신장(伸長)에 있어서는 어느구(區)를 막론(莫論)하고 생육초기(生育初期)(분얼최성기(分얼最盛期))에는 별(別)로 차이(差異)를 발견(發見)할 수 없으나 생육중기(生育中期)(분얼종료기(分얼終了期)부터 유수형성기(幼穗形成期) 사이에서는 심도(深度)가 깊은구(區)일수록 그 성장(成長)이 떨어지고 생육후기(生育後期)(수잉기)(穗잉期)에 접어들면서 부터는 도리여 심도(深度)가 깊은구(區)가 얕은구(區)보다 더 왕성(旺盛)한 신장(伸長)을 하였다. 이것은 시험처리별(試驗處理別)로 볼 때 생육중기(生育中期) 이후(以後) 균열구(區)는 어느 다른 구(區)보다 떨어지고 균암구(區)와 경운구(區) 간(間)에는 별차이(別差異)는 없으나 균암구(區)가 여간(與干) 초장신장(草丈伸長)이 우세(優勢)한 경향(傾向)을 나타냈다. 4. 경수(數)에 있어서는 전생육기간(全生育期間)을 통(通)하여 심도(深度)가 깊은구(區)일수록 그 수(數)가 적어지는 경향(傾向)을 나타냈고 이것을 시험처별(試驗處別)로 볼 때 균열구(區)는 늘 균암구(區)와 경운구(區)보다 떨어졌으며 또 경운구(區)는 균암구(區)보다 약간(若干) 우세(優勢)한 경향(傾向)을 나타냈다. 5. 수량(收量)(조곡중)(租穀重))에 있어서는 시험처리별(試驗處理別) 각(各) 시험구(試驗區)의 수량(收量)을 Control 구(區) 15-경운구(區)와 대비(對比)할 때 35-경운구(區)에 있어서는 17%, 35-암거구(區)에 있어서는 10% 기타구(其他區)에 있어서는 모두 Control구(區)와 같거나 떨어졌다. 그리고 전체적(全體的)으로 볼 때 심도(深度)가 깊은구(區)일수록 수량(收量)은 증가(增加)하였고 경운구(龜)는 균암구(區)보다, 균암구(區)는 균열구(區)보다 수량(收量)이 높았으며 심도구(深度區)에는 1%의 유의성시험처리(有意性試驗處理)에는 5%의 유의성(有意性)이 존재(存在)하였다. 6. 조곡중(粗穀重)에 더 많은 영향(影響)을 주는 감수심(減水深)은 후기감수심(後期減水深)이며 15cm 구(區)에서는 2.7cm/day 이내(以內)에서 25cm 구(區)에서는 3.0cm/day 이내(以內)에서 35cm 구(區)에서는 3.3cm/day이내(以內)의 범위(範圍)에서 감수심(減水深)이 증대(增大)하면 조곡중(粗穀重) 증대(增大)하였고 동시(同時)에 동일감수심(同一減水深)에서는 심도(深度)가 깊은구(區) 일수록 조곡중(粗穀重)은 증대(增大)하였다. 따라서 동일감수심도(同一減水深度)가 깊은구(區)일수록 수량면(收量面)에서 유리(有利)함을 암시(暗示)하고 있다. 7. 뿌리중량(重量)에서 비례(比例)하여 조곡중(粗穀重)은 증대(增大)하였으며 벼뿌리중량(重量)이 동일(同一)할때는 심도(深度)가 깊은구(區)일수록 조곡중(粗穀重)은 증대(增大)하는 경향(傾向)을 보여주고 있다. 또 시험처리별(試驗處理別)로 볼 때는 벼뿌리 중량(重量)은 균열구(區), 균암구(區), 경운구(區)의 순(順)으로 컸고 따라서 조곡중(粗穀重)도 역시(亦是) 같은 순(順)으로 컸다. 그리고 조곡중(粗穀重)은 중간낙수기간(中間落水期間)의 최소함수비(最少含水比)와 그때의 평균지온(平均地溫)에 관계(關係)되나 함수비(含水比)가 40%이하(以下)에서는 평균지온(平均地溫)은 함수비(含水比)에 비례(比例)하여 증가(增加)하는 경향(傾向)이 있음으로 주(主)로 최소함수비(最小含水比)에 영향(影響)을 받는바가 크다. 8. 짚조곡중비(粗穀重比)는 심도(深度)가 얕은구(區)일수록 커지는 경향(傾向)을 보였고 또 벼뿌리중량(重量)에 역지수함수적(逆指數函數的)으로 증대(增大)하였다. 또 같은 심도(深度)의 구(區)에서는 15cm 구(區)를 제외(除外)하고는 짚조곡중비(粗穀重比)는 감수심(減水深)에 비례(比例)하여 증대(增大)하였다. 감수심(減水深)이 어느 한도(限度)까지 증대(增大)됨에 따라 조곡중(租穀重)이 증대(增大)하지만 동시(同時)에 짚조곡중비(粗穀重比)도 증대(增大)함을 보여주고 있다. 9. 동일토성(同一土性)에서 구열량(龜裂量)은 기상조건(氣象條件) 특(特)히 증발량(蒸發量)의 증대(增大)에 따라 증대(增大)하며 답면건조도중(畓面乾燥途中)에 강우(降雨)가 있으면 답면구열량(畓面龜裂量)은 현저(顯著)히 감소(減小)한다. 점질토(粘質土)의 구열량(龜裂量)은 대체(大體)로 함수비(含水比)가 25% 이상(以上)에서는 함량비(含量比)에 역지수적(逆指數的)으로 증가(增加)하는 경향(傾向)을 보였고 구열(龜裂)의 최대(最大) 심도(深度)는 31% 이하(以下)의 함수비(含水比)에서는 일정(一定)한 값을 유지(維持)하는 경향(傾向)이있다. 10. Cone 지수(指數)는 어느 한도(限度)까지는 구열량(龜裂量)에 비례(比例)하는 경향(傾向)이있으나 구열량(龜裂量)이 어느 한도(限度)를 넘으면 약간(若干) 구열량(龜裂量)에 역비례(逆比例)하는 경향(傾向)을 보여주고 있다. 그 한도(限度)의 함수비(含水比)는 25% 근처가 될 것이다. 11. 최종낙수후 (最終落水後)의 Cone 지수(指數)의 경시적(經時的) 증대(增大)는 생육후기(生育後期)의 감수심(減水深)에 비례(比例)하는 경향(傾向)을 보였고 동일감수심(同一減水深)에서 균암구(區)는 다른 두 구(區)보다 큰Cone지수(指數)를 나타냈고 경운구(區)는 심도(深度)가 깊은구(區)일수록 균열구(區)보다 작은 Cone 지수(指數)를 나타냈는데 특(特)히 35-경운구(區) Cone의 지수(指數)는 현저(顯著)하게 작은 값을 나타냈다. 12. 최종낙수후(最終落水後)의 답면건조(畓面乾燥)에 있어서는 함수비(含水比)의 감소상황(減少狀況) 및 Cone 지수(指數)의 증대상황(增大狀況)에 비추어 볼 때 시험처리별(試驗處理別)로는 균암구(區)가 다른 두 구(區)보다 밟르고 경운구(區)는 가장 늦어지고 심도(深度)가 깊은 구(區)에서는 더욱 늦어지고 있다. 농업기계(農業 機械)의 주행(走行)에 지장(支障)을 가져오지 않을 정도(程度)의 Cone 지수(指數)($2.5kg/cm^2$)로 답면건조(畓面乾燥)를 시키자면 최종낙수시기(最終落水時期)를 잡는 시기(時期) 및 낙수기간(落水期間)동안의 강우(降雨)의 유무(有無)에 따라 다르게지만 강우(降雨)가 전혀 없다면 누계계기증발량(累計計器蒸發量)을 기준(基準)으로 잡을 때 균암구(區)에서는 누계계기증발량(累計計器蒸發量)으로 약(約) 44mm가 필요(必要)하고 기타구(其他區)에서는 50mm 이상(以上)이 필요(必要)하게 됨으로 균암구(區)에서의 답면건조진행(畓面乾燥進行)은 대체(大體)로 경운구(區), 균열구(區)보다 2일이상(日以上)이 빠르며 35-경운구(區)와 비교(比較)하면 5일(日) 이상(以上)이나 빠르게 될 것이다.

  • PDF