• Title/Summary/Keyword: 토양의 이화학적 특성

Search Result 244, Processing Time 0.028 seconds

Effect of Lime Materials Application on Reducing Injury of Simulated Acid Rain in Soybean (콩의 산성비 피해경감을 위한 석회물질의 시용효과)

  • Kim, Bok-Jin;Back, Jun-Ho;Kim, Heung-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.175-180
    • /
    • 1997
  • This experiment was conducted to find out the effects of lime materials application on reducing injury of simulated acid rain(SAR) in soybean grown in pot contained with sandy loam. Six treatments including control, slaked lime(SL), 1% and 2% lime water(LW) and composite treatments with SL+LW were applied. Slaked lime was applied to soil in pot before planting, and lime water was applied to leaves a day prior to the spray of SAR(pH 2.7) and normal rain(pH 6.0), and these were sprayed at 2-day intervals. Growth, yield and yield components, foliar injury rate, chrolophyll content and photosynthetic activity in leaves, content of mineral nutrients in plant and soil chemical properties were analyzed and investigated. These results obtained are summarized as follows : Seed yield of all lime treatment was reduced by SAR compared with control. But seed yield of all lime treatment was increased with treatment of lime material in soil and on leaves. After 15 and 45 times spray of SAR, all lime treatments were effective in injury reducing visible injury of leaves compared with none treatment. Chlorophyll content in leaves was highest in plants treated with slaked lime+ 1% lime water and photosynthetic activity was highest with treatment of slaked lime. Concentration of total nitrogen, phosphate, and sulfur in soybean plant were increased by the spray of SAR. Concentration of total nitrogen, potassium and calcium in soybean plant were increased with treatment of slaked lime into soil. By treatments of SAR, soil pH was decreased, and total nitrogen and sulfur concentration in soil were increased. However, available phosphate and exchangeable cations in soil such as calcium, magnesium and potassium were reduced. Soil pH, calcium and silicate concentration were increased with treatment of slaked lime into soil.

  • PDF

Effect of the Annual Repeated Fertilizer Application on the Occurrence of Paddy Weed in Spring (동일비료연용(同一肥料連用)이 답토양(畓土壤)의 봄잡초(雜草) 발생에 미치는 영향(影響))

  • Lee, Jae-Seog;Kim, Sang-Hyo;Choi, Dae-Ung;Youn, Jae-Tak;Park, No-Kwuan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.304-311
    • /
    • 1985
  • This study was carried out to find the spring-season weed growth status on account of different soil physicochemical properties due to continuous application of same fertilizer for 8 years at paddy field. The results examined on weed species, dry weight of weed, and weed growth status were summarized as follows. 1. 1-6 species of weed occurred in the plots treated by continueous application of different fertilizers. Cyperus serotinus could grow only in the phosphate defficient plots, however, in the N+P+K, N+P and N+P+K+compost plots, 4-6 kinds of weed occurred variously. 2. In the plots applied phosphate like as, P, P+K, N+P+K+compost, and N+P+K+plots, large amount of weed occurred apparently. 3. Positive correlation betwaen dry weight of Alopeculus aequalis, polygonum hydropiper and Chenopodium alburn and available phosphate content in soil was showed with high significance. 4. Available phosphate in soil affected weed growth and weed species composition among weed communities. Application of lime fertilizer tended to suppress the occurrence of Alopeculus aequalis. 5. Dry matter of polygonum Longisetum, Chenopodium album and polygonum hydropiper showed higher content of nitrogen, phosphate, calcium, and magnesium. Whereas those of Alopeculus aequalis, Cyperus Serotinus and Stellaria alsine were less.

  • PDF

Effects of Paper Mill Sludge Application on Early Growth of Acer palmatum Thunb. and Soil Physicochemical Properties of Forest Nursery (제지슬러지의 시용이 묘포의 단풍나무 초기생장과 토양의 이화학적 특성에 미치는 영향)

  • Park, Hyun;Lee, Don Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1998
  • As a basic research for developing a sludge application technique in forestry, this study was conducted to investigage a reasonable amount and period of sludge to be applied onto forest nursery of Acer palmatum Thunb. The paper mill sludge was used for the study, and ammonium nitrate was treated to some of them to reduce the C/N ratio lower than 40. The maximum amount of applied sludge was 7ton/ha/year, and they were spread on spring and on late summer. The sludge application did not stimulate early growth of the trees during a year. Since there was no significant changes in soil chemical properties, the amount of applied sludge was thought to be too little to result in a significant role for tree growth. However, the soil water showed significant increase of Cu when the activated sludges were applied during late summer. Thus, the time of application need to be determined cautiously with considering the risk of ground water contamination. In conclusion, if we set a goal from the view point of long-term concept such as forest productivity rather than to get a short-term product, the uncomposted sludge in small amount during growing season might be considered to be applied on forest nursery.

  • PDF

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Isolation and Properties of Amino Acid Antimetabolite from Streptomyces sp. 182-27 (Streptomyces sp. 182-27 균주가 생산하는 아미노산 대사길항물질의 정제와 특성)

  • 박부길
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 1992
  • A Streptomyces strain No. 182-27, which produced amino acid antimetabolite, was isolated from soil. During the course of screening for new amino acid antimetabolites from the culture broths of Actinomycetes, we found that the strain produced a substance active against Gram-positive bacteria and its activity was reversed by L-Ieucine on the synthetic minimal agar medium in the culture broth. The morphological and cultural characteristics serve to identify the producing organism strain 182-27 as the Streptomyces, although the species of this strain should be resolved in further studies. Fermentation was carried out in the synthetic medium at $28^{\circ}C$ for 78 hours. The fermentation yield reached about 2 mg per liter of the broth. Purification was done by ion exchange resin, active carbon, silica gel column chromatography and obtained 20 mg of pure active substance from the 20 $\ell$ culture broth. The 182-27 substance was obtained as white powder, mp 18SoC. From the physicochemical characteristics of the substance, it was amino acid like substance but unknown about its chemical structure. It is active against some Gram-positive bacteria and reversed by L-Ieucine.

  • PDF

The Physico-chemical Properties of the Soil at the Grounds of Replanted Zelkova serrata (Thunberg) Markino in Reclaimed Land from the Sea, Gwangyang Bay (광양만 바다 준설 매립지 느티나무의 식재 지반별 토양 이화학적 특성)

  • 김도균;박종민
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.85-94
    • /
    • 2004
  • This study was carried out to analyze physicochemical properties according to the soil height and to the six types of sites that were used as planting ground in the reclaimed land from the sea, Gwangyang Bay. The physicochemical properties of the soil types were tested by t-test(p<0.01, 0.05), at each of the 6 planting ground sites(p<0.01, 0.05), and at each height(p<0.01) of the planting grounds. These areas were tested by ANOVA and were significantly different. Improved soil was better than reclaimed soil from the sea for Zelkova growth because the improved soil contained lower amounts of pH, ECe, N $a^{+}$, $Ca^{++}$, $Mg^{++}$ SAR. Due to freedom from variables such as salt content in the underground as well as the physical and chemical disturbance of the soil, favorable planting ground for tree growth was recorded at the higher grounds than at the lower ones. Soil detriment to the tree growth in the studied sites included elements such as soil hardness, and the distribution of sodium in the tree root systems. The planting grounds for the favorable growth of landscape trees were determined in the following order: the grounds of mounding> the coved ground of improved soil, and the filled ground of improved soil.l.l.l.

Physicochemical and Spectroscopic Properties of By-product Composts Applied in Gangweon Highland (고령지 시용 부산물 퇴비의 이화학 및 분광학적 특성)

  • Park, Chol-Soo;Joo, Jin-Ho;Lee, Won-Jung;Jung, Yeong-Sang;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.313-320
    • /
    • 2005
  • Various by-product composts are applied in alpine farmland, and some of them generate many problems especially when they are not completely composted. The objective of this study was to investigate the physicochemical and spectroscopic properties of by-product composts used in Gangweon alpine uplands. Average organic matter content, C/N ratio and NaCl content in 3 species of registered composts were 33%, 13 and 0.8%, respectively, and the general quality were better than the guideline of by-product compost. Odor and contents of $NH_3$ and $CO_2$ in the registered composts were relatively lower than those in the unregistered composts. Among the 13 unregistered composts tested in this experiment, 3 species contained organic matter content less than 25%, 5 species had C/N ratio less than 10, and 8 species contained NaCl exceeded the acceptable level. Eight species in the unregistered composts contained more than 50% of water. Contents of heavy metals in both the registered and unregistered composts were lower than the acceptable level. In spectroscopic property analysis, registered composts were Band P types, and unregistered composts were Rp and P types.

The Weathering and Chemical Composition of Young Residual Entisols in Korea (잔적 암쇄토의 화학조성과 풍화도)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sun-Kwan;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2001
  • The weathering rates and change of chemical composition of 6 residual Entisols derived from granite, granite-gneiss, limestone, sandstone, shale, amd basalt in Korea were studied. The chemical composition of each profile with parent rocks were determined using XRF with the physico-chemical properties and the morphology of soils. In the A horizons of all the soils except Euiseong series, the content of clay, organic matter and cation exchange capacity(CEC) showed higher than those of C horizon, but bulk density and pH showed lower than C horizon. Clay content in the soil from sandstone was decrease with soil depth, which may caused by the elluriation. In total element analysis. $SiO_2$ was high in the soil from granite. granite-gneiss, sandstone and compare with basalt and limestone. $Fe_2O_3$ and MgO was high in the soil from basalt, limestone and shale compare with granite. granite-gneiss and sandstone. And ignition loss was particularly high in the soil from basalt and limestone. The rate of element loss was higher in base cations(Ca, K, Mg, Na) than Si, Al, Fe in the soils. The concentrations of $TiO_2$ in the A horizon compare with that of the C horizon was due to resulting from losses of other less stable elements existed. Considering with relative rate of each elements in soils, $SiO_2$ and $Al_2O_3$ which originated from sandstone and granite, granite-gneiss, sandstone, shale, and basalt were lost higher than those from lime tone, but loss of basic cations were more in the soil from limestone which may be rapid weathering of calcite. The magnitude of losses of the overall elements were increased in the order of the soils from sandstone and granite ${\gg}$ limestone and shale) granite-gneiss and basalt.

  • PDF

Characteristics and Genesis of Terrace Soils in Yeongnam Area -II. Physico-Chemical Properties (영남지역(嶺南地域)에 분포(分布)된 단구지토양(段丘地土壤)의 특성(特性)과 생성연구(生成硏究) -제(第) 2 보(報): 물리화학적(物理化學的) 특성(特性))

  • Jung, Y.T.;Kim, I.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.289-296
    • /
    • 1985
  • To clarify the soil characteristics and genesis of the clayey terrace soils distributed in Yeongcheon (inland region) and Yeongil (coastal region), 9 typifying pedons including a recent local deposits were studied. The physico-chemical properties found were summarized as follows; 1. The contents of available water of the terrace soils were ranged from 12.0 to 20.3%. They were increased with increaseing clay content up to 35%, and then decreased at clay content of 35 to 55%, but were maintained about 12 to 13% when the clay content exceeds 55%. 2. The amount of water stable aggregates in the surface soils were ranged from 55.0 to 81.1%, and were low in cultivated upland where water erosion were accelerated while high in the paddy where the double cropping were practiced. The index of aggregate in cultivated upland were higher in the surface soils but the paddy soils were higher in subsoils. 3. The colloidal reactions checked by the differences between pH in $0.01N-Na_2SO_4$ and $H_2O$ indicate exchangeable acidity to exchangeable neutrality, which means a sort of Red-yellow soil forming process had been prevailed during genesis of the terrace soils. 4. Cation exchange capacity of the clayey terrace soils were averaged about 15.8-20.2me/100g of fine earth and 35.6-52.6me/100g of clay. The rates of base saturation were 32.7 to 57.6% and the rates decreased with increasing the elevations of terraces. 5. The activities of free iron oxides were 0.061 to 0.739 and the values decreased with increasing elevation while the crystallinity index of iron oxides positively correlated with elevations the values ranged from 0.067 to 0.537.

  • PDF

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.