• Title/Summary/Keyword: 토양오염평가지수

Search Result 66, Processing Time 0.031 seconds

Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province (강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가)

  • Kim, Joung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.626-634
    • /
    • 2005
  • The objectives of this study was to assess pollution level and contamination status on tailings and soil in the vicinity of four disused metal mines in Kangwon province. As the result of total metal concentrations analysis, the pollution degree of tailings and soil decreased in the order of Wondong > Second Yeonhwa > Sinyemi ${\fallingdotseq}$ Sangdong mines. Total metal concentrations of mine tailings in this study were $1.2{\sim}78.2$ and $1.1{\sim}80.6$ times higher than those in the background soil and the tolerable levels suggested by Kloke, respectively. From these results, we found that tailings served as contamination source of nearby soil. According to sequential extraction of metals, large proportion of heavy metals in all mine tailings existed in the form of a residual fraction, and heavy metals in non-residual form was mainly associated with Fe-Mn oxide fraction and sulfidic-organic fraction. Fe-Mn oxide fraction and sulfidic-organic fraction of heavy metals may be released into and contaminated the nearby environment under the oxidation or reduction condition in long-term. In particular, the proportions of the exchangeable and carbonate fraction of Cd in mine tailings from Second Yeonhwa mine were relatively high. This suggests that Cd may be easily released into and contaminated the nearby environment in the near time. Concentrations of heavy metals in mine tailings and the nearby soil exceeded the standard (agricultural area) of Soil Environment Conservation Law. So it was thought that remediation for mine tailings and the nearby soil is needed. The pollution indices of the samples in this study were for higher than 1.0 and the pollution degree was very serious. Priority remediation site for these mines was Wondong. As Results of danger indices, it was showed that exchangeable form in Wondong and Fe-Mn oxide form in the rest mines should be removed preferentially.

Evaluation of Estimated Direct Runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir Using L-THIA Model (대청호 상류유역의 직접유출 및 비점오염배출부하 적용성 평가를 위한 L-THIA 모델)

  • Choi, Jae-Wan;Shin, Min-Hwan;Shim, In-Keun;Lee, Jae-An;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1139-1143
    • /
    • 2010
  • 대청호 수질관리를 위한 대책 수립시 상류유역의 유출 및 오염부하배출 특성을 평가하는 것이 중요하다. 유역의 수환경 영향을 평가하기 위해서 복잡한 수문 수질 모델을 이용하는데 사용자 편의성을 고려한 모델 개발과 이용이 필요하다. L-THIA ArcView GIS 모형은 토지이용도, 토양도, 일강우 자료만으로 직접유출의 모의가 가능하여 전 세계적으로 널리 이용되고 있다. 본 연구에서는 L-THIA ArcView GIS 모형을 이용하여 대청호 상류유역인 안내천, 월외천 유역의 직접유출 및 비점오염 배출부하 특성을 평가하였다. 직접 유출량 평가 결과, 결정계수($R^2$)와 유효지수(EI)가 월외천 유역 및 안내천 유역에서 각각 0.95, 0.93 및 0.81, 0.71로 나타나, L-THIA ArcView GIS 모형이 실측치를 잘 재현하는 것으로 나타났다. 강우유출수에 포함된 SS 및 T-P 오염부하량 평가결과, 결정계수($R^2$)가 월외천 유역과 안내천 유역에서 각각 0.53, 0.95 및 0.89, 0.89로 평가되었다. 또한 유효지수(EI)가 월외천 유역과 안내천 유역에서 각각 0.44, 0.95 및 0.98, 0.99로 평가되었다. SS 부하량 평가 결과에서 월외천 유역이 안내천 유역보다 정확성이 낮은 것은 지역특성에 따라 SS 부하량 차이가 크기 때문이다. 따라서 L-THIA ArcView GIS 모형의 지속적인 개선이 이루어진다면 대청호 만입부 상류유역에서의 각종 수질관리대책 평가에 활용될 수 있을 것으로 판단된다.

  • PDF

A Geo-statistical Assessment of Heavy Metal Pollution in the Soil Around a Ship Building Yard in Busan, Korea (통계지표를 활용한 부산지역 조선소 주변 토양 내 중금속 오염조사 연구)

  • Choi, Jung-Sik;Jeon, Soo kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2018
  • With the increase of metal usage in various industries, metal pollution and ecological toxicity in the environmental system have become a significant concern. A geo-statistical index has been widely used to determine contamination level with normalization through a background value. In this study, geo-statistical indexes such as an enrichment factor, accumulation index, and potential ecological risk index were used to assess metal pollution in soil at locations associated with shipbuilding manufacturing industries. Metal contamination, especially of Cu and Pb, was observed in some samples located closer to manufacturing sites. Enrichment factor and accumulation (IGEO) values were indicative of concerning levels of soil contamination in specific samples, and the soil contamination could be induced by anthropogenic sources. In further study, after more detailed sampling for soil and potential pollution sources, high interpretation techniques such as Pb isotope analysis and X-ray analysis will be needed to investigate source identification.

Modification of Sediment Routing of SWAT model for Predicting Sediment In Dry Condition (비강우시 하천 유사 예측을 위한 SWAT 모형 개선)

  • Bak, Sangjoon;Choi, Yonghun;Yang, Dongseok;Lee, Seroro;Lee, Gwanjae;Jeong, Yeonji;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.202-202
    • /
    • 2022
  • SWAT모형은 장기간에 모의가 가능하며 다양한 토양이용과 토지특성을 고려할 수 있는 유역 단위 모형으로 많은 연구에서 이용된다. 이러한 유역단위 수문모형의 평가는 통계적 지수(NSE, R2)들로 모형의 적합성을 평가한다. NSE, R2는 상대적으로 큰 값에 대한 영향을 많이 받는다. 따라서 많은 강우량이 발생하는 시점에서의 유출량과 SS농도가 중요시되었다. 하지만 강우시에 하천으로 유입된 토양 중 일부는 하천에 퇴적물로 침전된다. 이 침전된 토양이 비강우시 바람 등과 같은 이유로 재부유되며 이로 인해 수중 DO를 고갈시켜 수생태계 악영향을 미친다. 이에 따라 비점오염저감시설 평가는 강우시 발생하는 SS농도도 중요하지만 비강우시 재부유되는 SS농도도 중요한 부분이다. SWAT모형에서는 하천 SS농도를 계산하는데 사용되는 매개변수가 강우시와 비강우시에 동일하게 적용되어 비강우시에 과대 산정되어 비강우시 SS농도가 증가되도록 sediment routing이 진행되고 있었다. 본 연구에서는 sediment routing을 수정하여 비강우시 SS농도를 실측 농도와 비슷하게 보정할 수 있도록 개선하였다. 비점오염관리지역 중 하나인 자운천 유역에 개선된 sediment routing을 적용하였다. 개선된 모형은 비강우시 농도가 잘 반영하는 것으로 확인되었다.

  • PDF

An Introductory Research for Development of Soil Ecological Risk Assessment in Korea (토양생태 위해성평가 제도 국내 도입방안 연구)

  • An, Youn-Joo;Kim, Shin Woong;Moon, Jongmin;Jeong, Seung-Woo;Kim, Rog-Young;Yoon, Jeong-Ki;Kim, Tae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • Human activities have resulted in soil pollution problems to us. Human and ecological risk assessment have been suggested as an efficient environmental management strategy for protecting human and ecosystems from soil pollution. However, Korean environmental policy is currently focused on human protection, and fundamental researches for ecology protection are required for institutional frameworks. In this study, we developed a schematic frame of Korean soil ecological risk assessment, and suggested the basic information for its application. This study suggested a soil ecological risk assessment scheme consisting of 4 steps for derivation of Predicted-No-Effect-Concentration (PNEC): 1) ecotoxicity data collection and reliability determination, 2) data standardization, 3) evaluation of data completeness for PNEC calculation, and 4) determination of ecological-risk. The reliability determination of ecotoxicity data was performed using Reliability Index (RI), and the classification of domestic species, acute/chronic, toxicity endpoint, and soil properties was used for data cataloging. The PNEC calculation methodology was determined as low-reliability, middle-reliability, and high-reliability according to their quantitative and qualitative levels of ecotoxicity data. This study would be the introductory plan research for establishment of Korean soil ecological risk assessment, and it can be a fundamental framework to further develop guidelines of Korean environmental regulation.

Soil Contamination of Heavy Metals in National Industrial Complexes, Korea (국내 주요 국가산업단지에서 중금속에 의한 토양오염)

  • Jeong, Tae-Uk;Cho, Eun-Jeong;Jeong, Jae-Eun;Ji, Hwa-Seong;Lee, Kyeong-Sim;Yoo, Pyung-Jong;Kim, Gi-Gon;Choi, Ji-Yeon;Park, Jong-Hwan;Kim, Seong-Heon;Heo, Jong-Soo;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • BACKGROUND: Contamination of soils by heavy metals is the serious environmental problem. In particular, industrial processing is one of the main sources of heavy metal contamination. The objective of this study was to investigate the distribution characteristics of heavy metals in soils collected from industrial complex. METHODS AND RESULTS: In this study, the soil contamination and enrichment factor (EF) of heavy metals were investigated in three national industrial complexes such as Yeosu, Ulsan and Sihwa Banwal industrial complexes. The target heavy metals includes Cd, Cu, As, Hg, Pb, Cr, Zn, and Ni. The results showed that the contents of Cd, Hg, Pb, Zn and Ni in Yeosu and the contents of Cu, As and Cr in Sihwa Banwal were higher than in any other industrial complex. The results of principal component analysis(PCA) in Yeosu, Ulsan and Sihwa Banwal complex could be explained up to approximately 81.4, 69.1 and 70.9% by two factor, respectively. Enrichment factors of Cd, Pb and Zn in all the investigated industrial complexes were above 1.0 that was the value judged to be a high contamination. And EF of Cr was above 1.0 in Sihwa Banwal complex. EF of Zn in all sites was generally high from the other heavy metals. CONCLUSION: Therefore, soils maybe significantly affected by heavy metals (especially, Cd, Pb and Zn) present in the emissions from industrial complexes.

Leachate Concentration to Groundwater Considering Source Depletion for Risk Assessment in Vadose Zone of Contaminated Sites (오염부지 위해성평가 시 불포화대 오염원 고갈을 고려한 토양유출수 농도 결정)

  • Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.583-592
    • /
    • 2020
  • This study assessed source depletion in the vadose zones of contaminated sites. The possible range of infiltration rate in Korea was statistically analyzed. The results showed a trend of decreasing leachate concentration of 13 pollutants used for risk assessment. Among them, benzene, ethylbenzene, toluene, and xylene showed a lower leachate concentration in groundwater over time due to their low distribution coefficient and also possible biodegradation effects. The average values of the relative concentration could be taken as a default index due to a very small range of uncertainties. In the case of heavy metals, it was shown that the leachate concentration in a pollutant does not decrease over time. Considering the annually different infiltration, a site-specific source-depletion scenario was applied to Cheongju in North Chungcheong Province. The result was expressed as a time series of the relative concentration of the leachate concentration, and this was compared to the trend by averaged Korean infiltration. Finally, an open-source code that used Python was used to help calculate the leachate concentration by this site-specific infiltration scenario.

A Study on Countermeasure and Contamination Analysis for Heavy Metal Pollution of Nearby Area using Stony Mountain Field Case (석산개발 사례를 이용한 주변 지역의 중금속 오염분석 및 대책방안에 관한 연구)

  • Han, Jung-Geun;Yoon, Won-Il;Lee, Yang-Kyu;Lee, Jong-Yuong;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.57-66
    • /
    • 2010
  • This study is described in heavy metal pollution by the stony mountain development using field case. The heavy metal pollution is investigated for nearby area (soil and stream) of the developed stony mountain, and then the countermeasure using contamination analysis is suggested. The investigation result indicated that contamination of Sammak stream caused by the stone dust and leachate at the stony mountain development. Therefore, the heavy metal pollution is evaluated by using Pollution Index(PI). The evaluation results confirmed that the contaminated groundwater was the leading cause of the contamination in Sammak stream and nearby soil. Therefore, the Permeable Reaction Barrier(PRB), which has a environmentally-friendly reactant, should be applied to control a heavy metal of groundwater, and it will be a reasonable countermeasure.

  • PDF

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.