• Title/Summary/Keyword: 토양오염기준

Search Result 397, Processing Time 0.028 seconds

Immobilization of Lead in Contaminated Soil by Ekectrokinetic Remediation and Adsorbent (흡착재와 Electrokinetic 기법을 이용한 납 오염토의 고정화)

  • Han Sang-Jae;Kim Byung-Il;Lee Goon-Taek;Kim Soo-Sam
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2005
  • This study applied EK method to remediate contaminated soil by lead (Pb), tried increasing efficiency of remediation using adsorbent (apatite and zeolite) as enhanced EK remediation method to overcome the limit of traditional EK remediation method. Adsorption tests on Pb were practiced to extract EK, making different concentration of contaminated soil, voltage condition, operating time etc., transferring Pb-ion into the position of adsorbent, then tried immobilization. On this results, the efficiency of remediation is different on its test conditions. In addition, the efficiency of remediation was not only improved by adding electrode revεrsal and install position of adsorbent but also satisfied TCLP regulation of EPA in USA through the whole sample range. Finally, absorption and immobilization capacity of apatite and zeolite proved on its excellence and confirmed the possibility of application of apatite and zeolite as enhanced EK remediation method.

A geochemical and Geophysical Study on the Environmental contamination in the Vicinity of Waste Dispodal Site (폐기물 매립지 주변지역에서의 환경오염에 관한 지구화학 및 지구물리학적 연구)

  • Kim, Kyoung-Woong;Shon, Ho-Woong
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 1995
  • In the Vicinity of the Sindae-dong waste disposal site in Taejon, the average Cu, pb and Zn concentrations in soils are higher than those in other Korean soils but these are not high enough to cause any harmful effect to human and animal through the crop plants. Copper, Pb and Zn are not detected in the groundwater samples and F, Cl, $NO_2$, $NO_3$ and $SO_4$ concentrations in groundwater samples are lower than drinking water standards. However, the pH of groundwater sample in site D is 5.58 which is not suitable for the drinking water. With the electric resistivity method, the water-containg layers are found in contaminated soils and the resistivity values are considerably low because of the dispersion of plume by the leak of leachates. According to the results from the magnetic survey method, the anomalous values of the total geomagnetic fields and their gradients are found in the sampling site of low resistivity and high trace element concentrations.

  • PDF

A New Approach to Obtain Time Series for Dynamic Water Quality Analysis (동적 수질분석을 위한 시계열 자료 획득 방안 제시)

  • Park, Chae-Il;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1012-1016
    • /
    • 2006
  • 최근 오염총량관리제도를 위한 오염부하량의 관리문제가 대두되면서 이를 위한 수질분석의 중요성이 인식되고 있다. 그러나 시간적 변화를 가진 유입유량, 유입부하량 자료의 한계로 인하여 기준유량을 대상으로 하는 정적수질분석의 결과가 환경정책에 반영되고 있는 실정이며, 이는 하천유량의 변동과 강우 시 비점오염부하량을 무시한 지극히 제한된 분석에 국한되어 있다. 따라서 시간적 변화를 가진 동적수질분석의 결과가 정책에 반영되기 위해서는 자료의 확보가 우선이다. 본 연구에서는 월 별, 소유역 별 시계열 자료 확보를 위하여 합리적이고 사용이 용이한 방법을 제시하였다. 유출량의 경우, 기존의 비유량법과는 달리 저류효과를 고려한 토양수분 저류구조 Tank모형을 적용하여 장기간의 유출량을 산정하였고, 유출농도의 경우, 기존 인접유역의 동일 유달계수 적용과는 달리, 월 오염부하총량비와 유역오염부하 전달함수를 이용하여 월 별, 소유역 별, 수질변수 별 유출농도를 산정하였다. 산정된 유출량과 유출농도는 남강댐 상류유역 하천에서 WASP 모형을 가지고 동적수질분석을 하기 위하여 적용되었다. 그 결과 적절한 오염물질 농도곡선을 얻을 수 있었으며, 제안된 가정의 적용 가능성은 충분하였다.

  • PDF

An Experimental Study to Improve Permeability and Cleaning Efficiency of Oil Contaminated Soil by Plasma Blasting (플라즈마 블라스팅을 이용한 유류오염토양의 투수성과 정화효율 개선을 위한 실험적 연구)

  • Jang, Hyun-Shic;Kim, Ki-Joon;Song, Jae-Yong;An, Sang-Gon;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.557-575
    • /
    • 2020
  • Plasma blasting which is generated by high voltage arc discharge of electricity is applied to soil mass to improve permeability of soil and cleaning efficiency of oil contamination. A new high voltage generator was manufactured and three types of soil including silty sand, silty sand mixed with lime and silty sand mixed with cement were prepared. Small and large soil columns were produced using these types of soil and plasma blasting was performed within soil columns to investigate the variation of soil volume penetrated by fluid and permeability. Soil volume penetrated by fluid increased by 11~71% when plasma blasting was applied in soil. Although plasma blasting with low electricity voltage induced horizontal fracture and fluid penetrated along this weak plane, plasma blasting with high voltage induced spherical penetration of fluid. Plasma blasting increased the permeability of soil. Permeabilty of soils mixed with lime and cement increased by 450~1,052% with plasma blasting. Permeability of soil increased as discharge voltage increased when plasma blasing was applied once. However, several blastings with the same discharge voltage increase or decrease permeability of soil. Oil contaminated soil was prepared by adding diesel into soil artificially and plasma blasting was performed in these oil contaminated soil. Cleaning efficiency increased by average of 393% for soil located nearby the blasting and by average of 239% for soil located far from the blasting. Cleaning efficiency did not show any correlation with discharge voltage. All these results indicated that plasma blasting might be used for in-situ cleaning of oil contaminated soil because plasma blasting increased permeability of soil and cleaning efficiency.

Evaluation on Natural Background of the Soil Heavy Metals in Korea (우리나라 토양의 중금속 자연배경농도 평가)

  • Yoon, Jeong-Ki;Kim, Dong-Ho;Kim, Tae-Seung;Park, Jong-Gyum;Chung, Il-Rok;Kim, Jong-Ha;Kim, Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • This study was conducted in order to get the scientific background for soil pollution criteria. The 92 soil samples derived from various geological units were taken and analyzed to survey natural heavy metal background levels using aqua regia digestion method and 0.1N HCl extraction method. From these results, the average natural contents of metals were 0.287 mg/kg for Cd, 15.26 mg/kg for Cu, 18.43 mg/kg for Pb, 25.36 mg/kg for Cr, 54.27 mg/kg for Zn, 17.68 mg/kg for Ni, 6.83 mg/kg for As by the aqua regia method, and 0.040 mg/kg for Cd, 0.48 mg/kg for Cu, 3.06 mg/kg for Pb, 0.09 mg/kg for Cr, 1.54 mg/kg for Zn, 0.27 mg/kg for Ni, 0.089 mg/kg for As by the 0.1N HCl extraction method. Ratios of soluble contents and total contents were Cd 0.14, Cu 0.03, Pb 0.17, Cr 0.004, Zn 0.03, Ni 0.02, As 0.013 and the correlation coefficients of soluble contents and total contents were 0.24(As), 0.88(Cd), 0.43(Cr), 0.65(Cu), 0.70(Pb), 0.61(Ni), 0.24(Zn). The correlation factor decreased in the order of Cd > Pb > Cu > Ni > Cr > Zn $\approx$ As.

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Soil Contamination of Heavy Metals in National Industrial Complexes, Korea (국내 주요 국가산업단지에서 중금속에 의한 토양오염)

  • Jeong, Tae-Uk;Cho, Eun-Jeong;Jeong, Jae-Eun;Ji, Hwa-Seong;Lee, Kyeong-Sim;Yoo, Pyung-Jong;Kim, Gi-Gon;Choi, Ji-Yeon;Park, Jong-Hwan;Kim, Seong-Heon;Heo, Jong-Soo;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • BACKGROUND: Contamination of soils by heavy metals is the serious environmental problem. In particular, industrial processing is one of the main sources of heavy metal contamination. The objective of this study was to investigate the distribution characteristics of heavy metals in soils collected from industrial complex. METHODS AND RESULTS: In this study, the soil contamination and enrichment factor (EF) of heavy metals were investigated in three national industrial complexes such as Yeosu, Ulsan and Sihwa Banwal industrial complexes. The target heavy metals includes Cd, Cu, As, Hg, Pb, Cr, Zn, and Ni. The results showed that the contents of Cd, Hg, Pb, Zn and Ni in Yeosu and the contents of Cu, As and Cr in Sihwa Banwal were higher than in any other industrial complex. The results of principal component analysis(PCA) in Yeosu, Ulsan and Sihwa Banwal complex could be explained up to approximately 81.4, 69.1 and 70.9% by two factor, respectively. Enrichment factors of Cd, Pb and Zn in all the investigated industrial complexes were above 1.0 that was the value judged to be a high contamination. And EF of Cr was above 1.0 in Sihwa Banwal complex. EF of Zn in all sites was generally high from the other heavy metals. CONCLUSION: Therefore, soils maybe significantly affected by heavy metals (especially, Cd, Pb and Zn) present in the emissions from industrial complexes.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Distribution of Soil Fertility in Paddy Fields as Affected by Cultivation Methods and Topographical Regions (경작지대 및 재배방법에 따른 논토양의 비옥도 분포)

  • Kim, Dong-Jin;Kang, Da-Seul;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2015
  • Soil chemical properties in paddy fields were found to be varied depending upon different cultivation methods such as environmentally-friendly, conventional, and two-crop farming systems and different topographical regions, namely plain, middle mountainous, and reclaimed land regions. Overall soil pH was found to be in optimal range (pH 5.5~6.5) for rice cultivation, except with conventional cultivation fields of the reclaimed lands in Jeonnam province. Electrical conductivity (EC) was relatively higher in the two-crop cultivation fields than in others. However, the concentrations of available phosphate as $P_2O_5$ were exceptionally higher in the two-crop farming fields, thus in submerged paddy condition the phosphate could be released into streams and rivers. Soil organic matter (SOM) contents were mostly in optimal range ($25{\sim}30g\;kg^{-1}$) for paddy field in Jeonbuk province, but in Jeonnam province they were slightly higher values of the range. The concentrations of available silicate ($SiO_2$) were mostly depended on the cultivation methods and the region, but some of paddy fields contained extremely high $SiO_2$ concentration. Statistical relationships among the soil chemical properties showed as follows: Correlations between EC values and exchangeable cation concentrations, between SOM contents and CEC values, and between available $SiO_2$ concentrations and pH, EC, exchangeable cations, and CEC values were positively significant, whereas total nitrogen concentrations were significantly negatively correlated with the concentrations of exchangeable K and Mg. These results might be very useful to establish benchmark paddy fields contained with certain levels of soil fertility.