• Title/Summary/Keyword: 토양물리적 특성

Search Result 657, Processing Time 0.036 seconds

Dissolution Characteristics of Iron Ion in Soil by the Decontamination Solution (제염용액에 의한 토양 중 철 성분 용해 특성)

  • 원휘준;김계남;정종헌;최왕규;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.676-680
    • /
    • 2003
  • Dissolution of magnetite powders by 0.05 M citric acid was investigated at $50^{\circ}C$. All the tests were performed in the pH range between 2.0 to 5.0, which was adjusted using nitric acid or sodium hydroxide. Concentration of each of the dissociated chemical species of citric acid under various solution pHs was calculated using the ionization constants. Variation of zeta potential of magnetite with pH changes was also investigated. The dissolution reaction was explained by comparing the concentration of the dissociated chemical species of citric acid with the zeta potential. Longer than 3 h of induction time was required to dissolve the magnetite. The dissolution behaviour of magnetite was well described by the equation. The physical meaning of each parameter was explained successfully from the model equation.

  • PDF

Influence of Continuous Application with Food Waste Compost on Hot Pepper(Capsicum annuum L.) Yield and Growth (음식물 퇴비의 연용 시용에 따른 고추의 생육과 수량에 미치는 영향)

  • Jeon, Han-Ki;Chang, Ki-Woon;Hong, Sung-Gil;Yu, Young-Seok;Kwon, Hyuk-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.129-129
    • /
    • 2003
  • 본 연구는 음식물 퇴비의 합리적인 시용량을 검증하고, 3년 연용에 의한 토양 변화 및 고추 생육과 수량에 미치는 영향을 평가하고 돈분퇴비를 시용한 대조구와 생육 및 품질 면에서 비교 분석하여 적정한 퇴비 시용량을 설정하기 위하여 실시하였다. 처리구는 1, 2, 3차 연도 모두 동일한 방법으로 무처리구, 대조구(2ton/10a의 돈분퇴비), 음식물 퇴비 2t, 4t, 6t, 8ton/10a을 사용한 처리구 등 6개를 두었으며 3반복, 난괴법을 이용하였다. 음식물 퇴비와 돈분 퇴비의 이화학적 특성을 분석한 결과, 음식물 퇴비의 경우 1차 연도는 유기물과 NaCl 모두 부산물 비료의 공정규격에 적합하였으나, 2차 연도는 유기물이, 3차 연도는 NaCl이 공정규격에 적합하지 않았다. 그리고 돈분 퇴비의 경우 수분함량이 약간의 차이를 보였으나 공정규격을 벗어나지는 않았다. 토양은 음식물 퇴비 시용량이 증가할수록 대부분의 화학적 특성이 증가하였고, 연용에 의해서도 유기물, 치환성양이온, NaCl 등의 양이 증가함을 보여 염류집적이 일어나고 있음을 확인할 수 있었다. 또, 음식물 퇴비 시용량증가에 따라 비중은 낮아지고 공극률이 증가하여 물리성 개선에 도움을 주었으나, 1, 2, 3차 연도를 비교해 보았을 때 큰 차이는 없었다. 고추의 생육과 수량에 있어서도 음식물 퇴비 시용량이 증가할수록 초기 생육이 저조하였으며, 그로 인해 수량이 감소하였다. 또한 3년 연용으로 인한 음식물 퇴비의 축적으로 수량의 감소와 품질 저하를 초래하였다. 음식물 퇴비의 연용에서 2ton/10a 이상의 시용은 수량의 감소를 초래하였다. 이러한 결과로 볼 때 음식물 퇴비를 2ton/10a 이하로 사용하면 큰 무리는 없겠지만 장기 연용은 삼가는 것이 좋을 것이라 판단된다. 따라서 음식물 퇴비를 다른 일반 퇴비 제조의 중간 원료나, 또는 혼합 사용하는 시험을 계속 진행 중에 있다.

  • PDF

Analysis of Topography and Ground Characteristics of Landcreep Reoccurrence in the Yangpyeong Area (양평지역 땅밀림 재발생지의 지형 및 지반 특성 분석)

  • Park, Jae Hyeon;Lee, Sang Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.263-275
    • /
    • 2022
  • We conducted this study to provide essential data for implementing restoration measures on the physical properties of the geology, topography, and soil of the landcreep areas in Yangpyeong-gun, Gyeonggi-do. The strata of the survey area comprised topsoil, weathered soil, weathered rock, and soft rock layers. The landcreep area, caused by colluvial debris, was located in a convex topography shape distributed as bedrock with shales and incorporated with sandstone. According to the measurement of the displacement meter, the surveyed area has crept from 1.1 mm to 6.5 mm during the recurrent landcreep between 1 July and 27 August, 2020. The landcreep had progressed over two directions (S65° W, E45° S, and E70° S) which were similar to the groundwater flow direction (E82.5° S and S16.8° W). The average slope of the landcreep area occurred on a gentle slope (19.3°), lower than the average slope of the mountain area (25°) in Korea. The bulk density in the groundwater areas was lower than that in other surveyed areas.

Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique (동전기를 이용한 유수지 오염 퇴적토내 Cd, Pb 및 Cr제거)

  • Shin, Hyun-Moo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.68-77
    • /
    • 2009
  • For the reservoir sediment highly contaminated with total Cr, Pb, and Cd, the applicability of electrokinetic remediation method was evaluated. Also, BCR sequential extraction method was adopted to compare the heavy metal speciation in between before and after electrokinetic reaction that is operated under constant current condition for the sediment. After reaction, total Cr and Pb moved toward the direction of anode, while Cd tended to cathode and stayed highest in the midst of sediment specimen. From the BCR sequential extraction analysis, it was known that for total Cr and Pb the residual fraction that showed high fraction before reaction decreased and changed to the oxidation fraction. On the other hand, for Cd the fraction of exchangeable/carbonate that dominated most fractions before reaction changed to the residual and oxidation fractions.

A Study on the Selection of AMC of Curve Number (유출곡선지수의 선행토양함수조건 선정 기준 연구)

  • Kim, Jee-Sang;Ahn, Jaehyun
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.519-535
    • /
    • 2012
  • In order to establish a rainfall-runoff model, calibration of hydrological parameters for the model is very important. Especially, Curve Number(CN), estimated by NRCS method, is a main factor to apply unit hydrograph theory to calculation of peak discharge. For using NRCS method, it is needed selecting AMC because CN is strongly connected with that. In this study, we focus our concern on finding a applicable standard for selecting AMC for CN. For this, three dams which are Boryeong, Habchon, Namgang are selected as target basins to use observed data including rainfall and dam inflow. As a result of this research, it is found that CN must be included as a calibrated parameter to calculate effective rainfall for the rainfall-runoff model. Also, it is preferred to use PWRMSE of HEC-HMS program as a objective function for optimizing hydrological parameters. From the analyzing result of variation of AMC for peak discharge, it is recommended to apply AMC-III to estimation of CN for calculating effective rainfall of design hydrograph.

Soil Physical and Chemical Characteristics of River-Bed Sediments in River Basins (하천 퇴적토양의 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Gye;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.963-969
    • /
    • 2011
  • The river-bed sediments from the major river basins were analysed for the chemical and physical properties to evaluate environmental safety for the agricultural uses. The samples were taken from 16 sites of Han river, 36 of Geumgang river, 27 of Yeongsan river, and 140 of Nakdong river. The total of 219 samples from the 28 counties were taken from the surface of the sediments at the depth of 50 cm. The particle density of the sediments was greater than $2.63Mg\;m^{-3}$ and the whole range of the density was $2.60{\sim}2.69Mg\;m^{-3}$, the average particle size was 0.7 mm whereas the size range was 0.075~0.85 mm. The analyses of the particle sizes by basins showed that Han and Geumgang river had particle sizes of 0.075~0.85 mm, while Geumgang and Yeongsan river had particle sizes of 0.25~0.85 mm. Geumgang and Yeongsan river tended to have greater particle sizes. The average values of the chemical properties were 6.3 for pH, $0.16dS\;m^{-1}$ for EC, $8g\;kg^{-1}$ for organic matter, $101mg\;kg^{-1}$ for available phosphate, 0.39, 3.47, and $0.93cmol_c\;kg^{-1}$ for exchangeable potassium, calcium, and magnesium respectively. The greatest property at each basin was pH for Han river, Ec, available phosphate and exchangeable sodium for Geumgang river, organic matter, exchangeable calcium and magnesium for Yeongsan river, and exchangeable potassium for Nakdong river.

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

Occurrence and Distribution of Selected Veterinary Antibiotics in Soils, Sediments and Water Adjacent to a Cattle Manure Composting Facility in Korea (국내 우분 퇴비화 시설 인근 농경지 및 수계 중 Tetracycline 및 Sulfonamide 계열 항생물질의 분포특성)

  • Lim, Jung-Eun;Kim, Sung-Chul;Lee, Hyeon-Yong;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.845-854
    • /
    • 2009
  • There has been increased concern regarding the release of antibiotics to different environmental compartments due to the possibility of the development of antibiotic resistant bacteria. However, limited information is available regarding the occurrence, fate, and transport of antibiotics in Korea in both the aqueous phase and in solid phases such as sediment and soil. Therefore, this study was conducted to monitor the concentration of released antibiotics in surface water, sediment, and soil adjacent to a cattle manure composting facility in Korea. Specifically, the following six antibiotics were monitored: tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), sulfamethazine (SMT), sulfamethoxazole (SMX), and sulfathiazole (STZ). To extract and quantify the antibiotics from different environmental compartments, solid phase extraction (SPE) and high performance liquid chromatography mass spectrometry (HPLC/MS) techniques were adopted. The concentration of the six antibiotics ranged from below the detection limit (BDL) to 0.71 ${\mu}g$/L in surface water, from BDL to 27.61 ${\mu}g$/L in sediment, and from 0.12 to 157.33 ${\mu}g$/L in soil. In addition, higher concentrations of antibiotics were observed in surface water and sediment at locations closer to the composting facility indicating that composting is the source of the antibiotics found in the environment. Furthermore, higher concentrations of antibiotics were observed in the solid phase (sediment and soil) than the aqueous phase. These findings indicate that the possibility of antibiotic resistant bacteria is increased because such bacteria are more stable in the solid phase. Overall, longterm monitoring of the aqueous phase and solid phase is necessary to gain a better understanding of the impact of antibiotics from source on the environment in Korea.

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage (광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가)

  • Jung-Eun Kim;Won Hyun Ji
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 ㎛. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.