• Title/Summary/Keyword: 토션 바

Search Result 7, Processing Time 0.018 seconds

Development of Torsion Bar for Antiroll-Bar Assembly for Express Train (고속철도용 안티롤바 어셈블리의 토션바 개발)

  • Tominaga, Yasutoshi;Pyun, Young-Sik;Kim, Dong-Il;Choe, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.979-984
    • /
    • 2012
  • An antiroll-bar assembly is a precision component that is designed to control the rolling of railway cars. It is important for ensuring a safe and comfortable ride. A torsion bar is the main part of the antiroll-bar assembly. Now, this part is classified as a consumable, and it is imported into Korea from France. Therefore, there is a strong need to domestically develop a torsion bar suitable for Korean conditions and to reduce cost and improve quality. In this study, an antiroll bar is developed, and it is analyzed and tested by using a road histogram measured on Korean railroads. This bar shows satisfactory results in a comparison with the imported bar. It has a novel design featuring a ring cover made of SUS steels to prevent the corrosion of the torsion bar. Its safety is examined through CAE analysis and wear tests. It is found that its design does not result in a significant difference in static and fatigue safety. Two different SUS steels were investigated in terms of their wear resistance, and the best one was adopted.

Door Effort Analysis for Door Checker of Integrated Type with Torsion Bar Spring (토션 바 스프링을 적용한 일체형 도어체커 개폐력 해석)

  • Yoon, Sang-Min;Kang, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2012
  • Door effort was calculated for a new door checker with torsion bar spring and integrated checker case by FE analysis. A hybrid checker arm which has peaks and valleys only on the upper surface was adopted to reduce noise in operation and make operation with more distinctive steps. The checker arm was modeled using shell elements to estimate both the longitudinal and the lateral resistance force by checker arm. By combining the checker arm resistance force obtained from analysis and the door self-closing force by the theoretical calculation, door effort was predicted to show the good correlation with test results. In addition the unrolling effect of roller model was investigated and a new roller type for more smooth rolling was studied.

Development of composite torsion shaft for the aircraft structure under multiple load condition (복합하중을 받는 복합소재 중공 토크바 설계)

  • Jeong, Jong-Jae;Kim, Seung-Chul;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.484-491
    • /
    • 2016
  • The purpose of this development is weight reduction of hollow type steel torque bar by changing the material from steel to composite. Structure analysis is executed by the finite element model generated by the structural load condition and geometric structure requirement. According to this analysis result, optimized ply sequence and wall thickness are defined. To simulate analysis result, torsion test for composite torque bar was performed. Throughout the test result, the stiffness and strength requirement of composite torque bar was verified.

Development of the Non-Contact Torque Sensor for EPAS Using Maluss Polarization Law (Malus의 편광법칙을 이용한 EPAS용 비접촉 torque sensor 개발)

  • Roh, Byung-Ok;Park, Ho;Kang, Pan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1039-1046
    • /
    • 2001
  • Among the automotive steering systems, an Electric Power Assisted steering (EPAS) system utilizes an electronically controlled electric motor to provide steering assistance to the driver. The key components of the EPAS system are torque sensor, ECU (Electronic Control Unit), and DC Motor. The most important component of the EPAS is the torque sensor. The conventional torque sensor has complicated mechanical mechanism of torque detection. However, we suggest a non-contact torque sensor for EPAS using Maluss polarization law. It was found that the sensor exhibited not only excellent linearity but also superior characteristics of hysteresis, temperature and vibration.

Analysis of Bending and Rotation Phenomenon of Torsion Bar During Press-fitting Process for EPS Angle Sensors (EPS 각도센서용 토션 바의 압입공정의 휨과 회전현상 분석)

  • H. Lee;S.H. Lee;T.H. Jeon;I.-K. Chung
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.376-383
    • /
    • 2023
  • The torsion bar, which is a steering torque sensor, is mounted between the steering pinion and the input shaft in the IPA(input pinion assembly). Accurate torque measurement is important to improve the sense of operation, and the straightness of the torsion bar can affect torque measurement. In this study, the amount of bending was measured and the exact shape was analyzed regarding the bending phenomenon in the press-fitting process for torsion bars. The effect of alignment error was analyzed through finite element forming analysis. Process data analysis was conducted for the double-end press fit model. If there is an alignment error of about 10% of the serration tooth height, the indentation load is reduced by about 10%. If there is an alignment error, the torsion bar is rotated.

UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles (초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구)

  • Suh, Chang-Min;Pyoun, Young-Sik;Cho, In-Ho;Baek, Un-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.